7.在三角形ABC中,∠A的平分線為AD,點D在邊BC上,AD=3,AC=4,CD=2,則cosA的值為(  )
A.$\frac{27}{32}$B.$\frac{3}{4}$C.-$\frac{17}{32}$D.$\frac{17}{32}$

分析 直接利用余弦定理求出A的一半的余弦函數(shù),然后利用二倍角公式求解即可.

解答 解:在三角形ABC中,∠A的平分線為AD,點D在邊BC上,AD=3,AC=4,CD=2,
則cos$\frac{A}{2}$=$\frac{A{D}^{2}+A{C}^{2}-C{D}^{2}}{2AD•AC}$=$\frac{9+16-4}{2×3×4}$=$\frac{7}{8}$,
cosA=2cos2$\frac{A}{2}$-1=2×$\frac{49}{64}$-1=$\frac{17}{32}$.
故選:D.

點評 本題考查三角形的解法,余弦定理的應(yīng)用,二倍角公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知過點M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為10,求直線l的方程為x-3y-6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.正三棱柱體積為16,當(dāng)其表面積最小時,底面邊長a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx+d的圖象如圖所示,設(shè)φ(x)=ax2-bx+c+d,則下列結(jié)論成立的是( 。
A.φ(1)<0B.φ(1)>0C.φ(1)≤0D.φ(1)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an+log2an}(n∈N*)的前10項和T10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列各式中最小值為2的是( 。
A.$\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$B.$\frac{a}$+$\frac{a}$C.2x+$\frac{1}{2^x}$D.cosx+$\frac{1}{cosx}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.距某碼頭400公里的正東方向有一個臺風(fēng)中心,正以每小時20公里的速度向西北方向移動,據(jù)經(jīng)驗,臺風(fēng)中心距碼頭300公里時,將對碼頭產(chǎn)生影響,則這個臺風(fēng)對碼頭產(chǎn)生影響的時間為(  )
A.8小時B.9小時C.10小時D.12小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,如下結(jié)論中正確的是( 。
A.f(x)圖象C關(guān)于直線x=$\frac{11}{12}$π對稱
B.f(x)圖象C關(guān)于點($\frac{2π}{3}$,0)對稱
C.函數(shù)f(x)在區(qū)間($\frac{5π}{6}$,$\frac{4π}{3}$)內(nèi)是增函數(shù)
D.把y=sin2x向右平移$\frac{π}{3}$個單位可以得到f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,邊長為a+b+1(a>0,b>0)的正方形被剖分為9個矩形,這些矩形的面積如圖所示,則$\frac{{S}_{3}}{{S}_{2}+{S}_{4}}$+$\frac{2{S}_{5}}{{S}_{6}+{S}_{8}}$+$\frac{{S}_{7}}{{S}_{1}+{S}_{5}}$的最小值是2.

查看答案和解析>>

同步練習(xí)冊答案