A. | V=$\frac{1}{3}$abc(a,b,c,為底面邊長(zhǎng)) | |
B. | V=$\frac{1}{3}$Sh(S為底面面積,h為四面體的高) | |
C. | V=$\frac{1}{3}$(S1+S2+S3+S4)r(S1,S2,S3,S4分別為四面體四個(gè)面的面積,r為四面 體內(nèi)切球的半徑) | |
D. | V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c為底面邊長(zhǎng),h為四面體的高) |
分析 根據(jù)平面與空間之間的類(lèi)比推理,由點(diǎn)類(lèi)比點(diǎn)或直線,由直線 類(lèi)比 直線或平面,由內(nèi)切圓類(lèi)比內(nèi)切球,由平面圖形面積類(lèi)比立體圖形的體積,結(jié)合求三角形的面積的方法類(lèi)比求四面體的體積即可.
解答 解:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r,
根據(jù)三角形的面積的求解方法:分割法,將O與四頂點(diǎn)連起來(lái),可得四面體的體積等于以O(shè)為頂點(diǎn),分別以四個(gè)面為底面的4個(gè)三棱錐體積的和,
∴V=$\frac{1}{3}$(S1+S2+S3+S4)r,
故選C.
點(diǎn)評(píng) 類(lèi)比推理是指依據(jù)兩類(lèi)數(shù)學(xué)對(duì)象的相似性,將已知的一類(lèi)數(shù)學(xué)對(duì)象的性質(zhì)類(lèi)比遷移到另一類(lèi)數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類(lèi)事物之間的相似性或者一致性.②用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(或猜想).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2=2y | B. | x2=4y | C. | x2=2y或x2=4y | D. | x2=3y或x2=2y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=-3,b=1 | B. | a=3,b=1 | C. | a=-3,b=-1 | D. | a=3,b=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ② | B. | ①② | C. | ③④ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 甲日德、乙法德、丙英法、丁英德 | B. | 甲日英、乙日德、丙德法、丁日英 | ||
C. | 甲日德、乙法德、丙英德、丁英德 | D. | 甲日法、乙英德、丙法德、丁法英 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com