圓(x-4)2+(y-2)2=9與圓x2+(y+1)2=4的位置關(guān)系為(  )
A、相交B、內(nèi)切C、外切D、外離
考點(diǎn):圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:由兩圓的方程可得圓心坐標(biāo)及其半徑,判斷圓心距與兩圓的半徑和差的關(guān)系即可得出.
解答: 解:圓(x-4)2+(y-2)2=9的圓心C(4,2),半徑r=3;
圓x2+(y+1)2=4的圓心M(0,-1),半徑 R=2.
(4-0)2+(2+1)2
=5,R+r=3+2=5.
∴兩圓相外切.
故選:C.
點(diǎn)評(píng):本題考查了判斷兩圓的位置關(guān)系的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m+log2x2的定義域是[-2,-1],且f(x)≤4恒成立,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,4]
B、[2,+∞)
C、(-∞,2]
D、[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)-g(x)=10x,則f(1),f(2),g(3)從小到大的順序?yàn)?div id="qolegve" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AB
AC
=2
3
,∠BAC=30°.
(1)求△ABC的面積;
(2)設(shè)M是△AB內(nèi)一點(diǎn),S△MBC=
1
2
,設(shè)f(M)=(m,n),其中m,n分別是△MCA,△MAB的面積,求
1
m
+
4
n
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的奇函數(shù)f(x)是減函數(shù),當(dāng)不等式f(a)+f(a2)<0成立時(shí),實(shí)數(shù)a的取值范圍是( 。
A、a<-1 或 a>0
B、-1<a<0
C、a<0 或 a>1
D、a<-1 或 a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M與二個(gè)定點(diǎn)O(0,0)和A(3,0)的距離的比為
1
2
,則點(diǎn)M的軌跡方程為( 。
A、x2+y2+2x-5=0
B、x2+y2+2x-3=0
C、x2+y2-2x-5=0
D、x2+y2-2x-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xa2-2a-3(常數(shù)a∈Z)為偶函數(shù)且在(0,+∞)是減函數(shù),則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把數(shù)30.7,30.8,log0.31.8,log0.32.7用“<”連結(jié)的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知U=R,A={x|log
1
2
(3-x)≥-2},B={x|
5
x+2
≥1},求B∩∁UA.

查看答案和解析>>

同步練習(xí)冊(cè)答案