分析 根據(jù)條件,對$|\overrightarrow{AB}-2\overrightarrow{CD}|=2\sqrt{3}$兩邊平方即可求出$\overrightarrow{AB}•\overrightarrow{CD}$的值,從而可求出$cos<\overrightarrow{AB},\overrightarrow{CD}>$的值,進(jìn)而得出向量$\overrightarrow{AB},\overrightarrow{CD}$的夾角.
解答 解:據(jù)條件:
$(\overrightarrow{AB}-2\overrightarrow{CD})^{2}$
=${\overrightarrow{AB}}^{2}-4\overrightarrow{AB}•\overrightarrow{CD}+4{\overrightarrow{CD}}^{2}$
=$4-4\overrightarrow{AB}•\overrightarrow{CD}+4$
=12;
∴$\overrightarrow{AB}•\overrightarrow{CD}=-1$;
∴$cos<\overrightarrow{AB},\overrightarrow{CD}>=\frac{\overrightarrow{AB}•\overrightarrow{CD}}{|\overrightarrow{AB}||\overrightarrow{CD}|}=-\frac{1}{2}$;
∴向量$\overrightarrow{AB},\overrightarrow{CD}$的夾角為120°.
故答案為:120°.
點(diǎn)評 考查向量數(shù)量積的運(yùn)算及計(jì)算公式,向量夾角的余弦公式,以及向量夾角的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,+∞) | B. | [3,+∞) | C. | (-∞,3) | D. | (-∞,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,sinx0+cos0=$\frac{3}{2}$ | |
B. | 已知X服從正態(tài)分布N(0,σ2),且p(-2<X≤2)=0.6,則P(X>2)=0.2 | |
C. | 已知a,b為實(shí)數(shù),則a+b=0的充要條件是$\frac{a}$=-1 | |
D. | 命題“?x∈R,x2-x+1>0”的否定是“?x0∈R,x2-x+1<0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3} | B. | {1,3} | C. | (1,3] | D. | (1,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com