8.定義域?yàn)镽的偶函數(shù)f(x)滿足?x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(x+1)至少有五個(gè)零點(diǎn),則a的取值范圍是(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{3}}{3}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

分析 先利用函數(shù)是偶函數(shù)求出f(1),進(jìn)而得到函數(shù)的周期性,然后利用函數(shù)的周期性和奇偶性作出函數(shù)f(x)的圖象,利用f(x)與loga(x+1)的圖象關(guān)系確定取值范圍.

解答 解:∵f(x+2)=f(x)-f(1),
且f(x)是定義域?yàn)镽的偶函數(shù),
令x=-1可得f(-1+2)=f(-1)-f(1),
又f(-1)=f(1),
可得f(1)=0 則有,f(x+2)=f(x),
∴f(x)是周期為2的偶函數(shù).
當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18=-2(x-3)2,
函數(shù)f(x)的圖象為開口向下,頂點(diǎn)為(3,0)的拋物線.
∵函數(shù)y=f(x)-loga(x+1)至少有五個(gè)零點(diǎn),
令g(x)=loga(x+1),
∵f(x)≤0,∴g(x)≤0,可得0<a<1,
要使函數(shù)y=f(x)-loga(x+1)至少有五個(gè)零點(diǎn),

如上圖所示,只需要滿足g(4)>f(2),即 loga(4+1)>f(2)=-2,
∴l(xiāng)oga5>-2,∴5<$\frac{1}{{a}^{2}}$,解得$-\frac{\sqrt{5}}{5}$<a<$\frac{\sqrt{5}}{5}$.
又a>0,∴0<a<$\frac{\sqrt{5}}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)與方程以及函數(shù)零點(diǎn)個(gè)數(shù)問題,解決此類問題的基本方法是利用數(shù)形結(jié)合,將函數(shù)零點(diǎn)問題轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)個(gè)數(shù)問題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若定義在R的函數(shù)f(x)=ln(ax+$\sqrt{{x^2}+1}}$)為奇函數(shù),則實(shí)數(shù)a的值為( 。
A.1B.-1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x-lnx-1,g(x)=k(f(x)-x)+$\frac{{x}^{2}}{2}$,(k∈R).
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當(dāng)1<k<3,x∈(1,e)時(shí),求證:g(x)>-$\frac{3}{2}$(1+ln3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知C${\;}_{n+1}^{n-1}$=36,則n=8;已知6p=2,log65=q,則${10^{\frac{q}{p+q}}}$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對(duì)任意x∈R,都有f(x)+f(-x)=x2,且x∈(0,+∞)時(shí),f′(x)>x,若f(2-a)-f(a)≥2-2a2,則實(shí)數(shù)a的取值范圍是( 。
A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,某多面體的三視圖中正視圖、側(cè)視圖和俯視圖的外輪廓分別為直角三角形、直角梯形和直角三角形,則該多面體的各條棱中,最長(zhǎng)的棱的長(zhǎng)度為( 。
A.2$\sqrt{2}$B.$\sqrt{10}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某四棱錐的三視圖如圖所示,該四棱錐最長(zhǎng)棱的棱長(zhǎng)為( 。
A.2B.$\sqrt{5}$C.3D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{16}{3}$B.6C.$\frac{20}{3}$D.$\frac{22}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知2an-2=Sn,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案