8.若定義在R的函數(shù)f(x)=ln(ax+$\sqrt{{x^2}+1}}$)為奇函數(shù),則實數(shù)a的值為( 。
A.1B.-1C.±1D.0

分析 根據(jù)函數(shù)奇偶性的定義建立方程關系進行求解即可得到結論.

解答 解:∵定義在R的函數(shù)f(x)=ln(ax+$\sqrt{{x^2}+1}}$)為奇函數(shù),
∴f(-x)=-f(x),
即f(-x)+f(x)=0,
則ln(ax+$\sqrt{{x^2}+1}}$)+ln(-ax+$\sqrt{{x^2}+1}}$)=ln(ax+$\sqrt{{x^2}+1}}$)•(-ax+$\sqrt{{x^2}+1}}$)=ln(x2+1-a2x2)=0,
則x2+1-a2x2=1,即x2-a2x2=0,
則1-a2=0,
則a=±1,
故選:C

點評 本題主要考查函數(shù)奇偶性的應用,根據(jù)奇函數(shù)的定義建立方程關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.求滿足下列條件的圓的方程:
(1)過三點A(5,1),B(7,-3),C(2,8)的圓;
(2)過點A(1,-1)、B(-1,1)且圓心在直線x+y-2=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)=Asin(2x+ϕ),(A>0,|ϕ|<$\frac{π}{2}}$),對任意x都有f(x)≤f($\frac{π}{6}}$)=2,則g(x)=Acos(2x+ϕ)在區(qū)間[0,$\frac{π}{2}$]上的最大值與最小值的乘積為(  )
A.$-2\sqrt{3}$B.$-\sqrt{3}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.《九章算術》有這樣一個問題:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和為三百九十里,問第六日所走時數(shù)為( 。
A.140B.150C.160D.170

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ y≥-1\end{array}\right.$,則2x+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是BC,CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1
(2)設AB的中點為D,且CD=A1D,求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示的幾何體中,ABC-A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-C1D-C的余弦值為$\frac{{\sqrt{5}}}{5}$,求三棱錐C1-A1CD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}{(3-a)x-3,x≤7}\\{{a}^{x-6},x>7}\end{array}\right.$單調(diào)遞增,則實數(shù)a的取值范圍是( 。
A.($\frac{9}{4}$,3)B.[$\frac{9}{4}$,3)C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.定義域為R的偶函數(shù)f(x)滿足?x∈R,有f(x+2)=f(x)-f(1),且當x∈[2,3]時,f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(x+1)至少有五個零點,則a的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{3}}{3}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

查看答案和解析>>

同步練習冊答案