分析 假設(shè)AC與BD相交于點(diǎn)E,則BE⊥平面SAC,BE=$\frac{\sqrt{2}}{2}$.利用正方體的性質(zhì)與勾股定理的逆定理可得OA⊥OC,利用四面體A-SOB的體積V=VB-SAO=$\frac{1}{3}$BE•S△SAO.即可得出.
解答 解:假設(shè)AC與BD相交于點(diǎn)E,則BE⊥平面SAC,BE=$\frac{\sqrt{2}}{2}$.
連接SA,∵SC是直徑,∴SA⊥AC,
∵OA2+OC2=AC2=2,
∴OA⊥OC,
∴又S△SAO=S△OAC=$\frac{1}{2}O{C}^{2}$=$\frac{1}{2}$.
四面體A-SOB的體積V=VB-SAO=$\frac{1}{3}$BE•S△SAO=$\frac{1}{3}×\frac{\sqrt{2}}{2}$×$\frac{1}{2}$=$\frac{\sqrt{2}}{12}$.
故答案為:$\frac{\sqrt{2}}{12}$.
點(diǎn)評(píng) 本題考查了線面面面垂直的判定性質(zhì)定理、正方形的性質(zhì)、正四面體的性質(zhì)、球的性質(zhì)、三棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.6 | B. | 0.4 | C. | 0.3 | D. | 0.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x≤1} | B. | {x|0<x≤1} | C. | {x|-1≤x≤1} | D. | {x|x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{9}$ | C. | -9 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1) | B. | (-3,1] | C. | (-∞,3)∪[-1,+∞) | D. | (-3,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com