14.如圖,△ABC中,AC=BC=$\frac{\sqrt{2}}{2}$AB,四邊形ABED是邊長為a的正方形,平面ABED⊥平面ABC,若G、F分別是EC、BD的中點.
(1)求證:GF∥平面ABC;
(2)求BD與平面EBC所成角的大;
(3)求幾何體EFBC的體積.

分析 (1)如圖,連接EA交BD于F,利用正方形的性質(zhì)、三角形的中位線定理、線面平行的判定定理即可證明.
(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是線BD與平面EBC所成的角.經(jīng)過計算即可得出.
(3)利用VEFBC=VFEBC=$\frac{1}{3}$S△EBC•FG即可得出.

解答 (1)證明:如圖,連接EA交BD于F,
∵F是正方形ABED對角線BD的中點,
∴F是EA的中點,
∴FG∥AC.
又FG?平面ABC,AC?平面ABC,
∴FG∥平面ABC.
(2)解:∵平面ABED⊥平面ABC,
BE⊥AB,∴BE⊥平面ABC.
∴BE⊥AC.
又∵AC=BC=$\frac{\sqrt{2}}{2}$AB,
∴BC⊥AC,
又∵BE∩BC=B,
∴AC⊥平面EBC.
由(1)知,F(xiàn)G∥AC,
∴FG⊥平面EBC,
∴∠FBG就是線BD與平面EBC所成的角.
又BF=$\frac{1}{2}$BD=$\frac{\sqrt{2}a}{2}$,F(xiàn)G=$\frac{1}{2}$AC=$\frac{\sqrt{2}a}{4}$,sin∠FBG=$\frac{FG}{BF}$=$\frac{1}{2}$.
∴∠FBG=30°.
(3)解:VEFBC=VFEBC=$\frac{1}{3}$S△EBC•FG=$\frac{1}{3}$•$\frac{1}{2}$•a•$\frac{\sqrt{2}a}{2}$•$\frac{1}{2}$•$\frac{\sqrt{2}a}{2}$=$\frac{{a}^{3}}{24}$.

點評 本題考查了正方形的性質(zhì)、線面面面平行垂直的判定與性質(zhì)定理、三棱錐的體積計算公式、線面角的求法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,正四棱錐O-ABCD的棱長均為1,點A、B、C、D在球O的表面上,延長CO交球面于點S,則四面體A-SOB的體積為$\frac{\sqrt{2}}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和Sn,正項數(shù)列{cn}中,c2=e(e為自然對數(shù)的底數(shù),e≈2.71828),且對任意正整數(shù)n,2n-1是Sn與an的等差中項,$\sqrt{{c}_{n+1}}$是cn與cn+1的等比中項.
(1)求證:對任意正整數(shù)n,都有an<an+1<2n
(2)求證:對任意正整數(shù)n,都有l(wèi)nc1+lnc2+…+lncn>$\frac{3}{2}$(an-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,酒杯的形狀為倒立的圓錐,杯深8cm,其容積為80cm3,水以20cm3/s的流量倒入杯中,當水深為4cm時,水杯中水升高的瞬時變化率$\frac{8}{3}$cm/s.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐 A-BCDE中,側(cè)面△ADE為等邊三角形,底面 BCDE是等腰梯形,且CD∥B E,DE=2,CD=4,∠CD E=60°,M為D E的中點,F(xiàn)為AC的中點,且AC=4.
(1)求證:平面 ADE⊥平面BCD;
(2)求證:FB∥平面ADE;
(3)求四棱錐A-BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知a,b,c是三條不重合的直線,α,β,γ是三個不重合的平面,給出下列命題:
①a∥γ,b∥γ⇒a∥b;②a∥c,c∥α⇒a∥α;③a⊥β,a∥α⇒α⊥β;④a?α,α⊥β⇒a⊥β.
其中正確命題的序號是( 。
A.B.②③C.①②③D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知f(x)=lnx-$\frac{x}{4}$+$\frac{3}{4x}$,g(x)=-x2-2ax+4,若對?x1∈(0,2],?x2∈[1,2],使得f(x1)≥g(x2)成立,則a的取值范圍是( 。
A.[-$\frac{1}{8}$,+∞)B.[$\frac{25-8ln2}{16}$,+∞)C.[-$\frac{1}{8}$,$\frac{5}{4}$]D.(-∞,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.用數(shù)學歸納法證明:若n為大于1的整數(shù),則$\frac{1}{3}$+$\frac{1}{7}$+…+$\frac{1}{{2}^{n}-1}$<n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在平面直角坐標系xoy中,若圓C與圓x2+y2-4x-8y+12=0關(guān)于直線x+2y-5=0對稱,則圓C的標準方程為x2+y2=8.

查看答案和解析>>

同步練習冊答案