15.設(shè)a=40.6,b=80.34,c=(${\frac{1}{2}}$)-0.9,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

分析 化簡a,b,c,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷其大小即可.

解答 解:∵a=40.6=21.2,
b=80.34=21.02
c=(${\frac{1}{2}}$)-0.9=20.9,
且f(x)=2x在R遞增,
∴a>b>c,
故選:A.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì),考查根據(jù)函數(shù)的單調(diào)性判斷函數(shù)值的大小問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).
(1)求異面直線AP,BM所成角的余弦值;
(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為$\frac{4}{5}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求雙曲線C:$\frac{x^2}{8}$-$\frac{y^2}{12}$=1的焦點(diǎn)坐標(biāo)、實(shí)軸長、虛軸長及漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列各組函數(shù)中不表示同一函數(shù)的是( 。
A.f(x)=lgx2,g(x)=2lg|x|B.f(x)=x,g(x)=$\root{3}{{x}^{3}}$
C.f(x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$•\sqrt{x-2}$D.f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x<-1}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≥-3且x≠-2}B.{x|x≥-3且x≠2}C.{x|x≥-3}D.{x|x≥-2且x≠3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}f({x+2}),x<3\\{2^x},x≥3\end{array}$,則f(log23)=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)左,右焦點(diǎn)為F1,F(xiàn)2,P是雙曲線C上的一點(diǎn),PF1與x軸垂直,△PF1F2的內(nèi)切圓方程為(x+1)2+(y-1)2=1,則雙曲線方程為( 。
A.$\frac{x^2}{2}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{2}=1$C.$\frac{x^2}{2}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=x|x-a|,若對(duì)任意x1,x2∈[3,+∞)且x1≠x2有不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,則實(shí)數(shù)a取值范圍為( 。
A.(-∞,-3]B.[-3,0)C.(-∞,3]D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某四面體的三視圖如圖所示,該四面體的體積的是8.

查看答案和解析>>

同步練習(xí)冊答案