5.已知$\overrightarrow a=(3,2),\;\overrightarrow b=({-1,2}),\overrightarrow c=({4,1})$,若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b-\overrightarrow a)k$,則實(shí)數(shù)k的值-$\frac{16}{13}$或0,若$(\overrightarrow a+k\overrightarrow c)⊥(2\overrightarrow b-\overrightarrow a)k$,則實(shí)數(shù)k的值$-\frac{11}{18}$或0.

分析 直接利用向量求解共線向量,利用共線向量平行于垂直的充要條件列出方程求解即可.

解答 解:$\overrightarrow a=(3,2),\;\overrightarrow b=({-1,2}),\overrightarrow c=({4,1})$,可得$\overrightarrow{a}+k\overrightarrow{c}$=(3+4k,2+k).$(2\overrightarrow-\overrightarrow{a})k$=(-5k,2k)
若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b-\overrightarrow a)k$,可得-5k(2+k)=2k(3+4k),解得k=-$\frac{16}{13}$,或k=0.
若$(\overrightarrow a+k\overrightarrow c)⊥(2\overrightarrow b-\overrightarrow a)k$,可得-5k(3+4k)+2k(2+k)=0.
則實(shí)數(shù)k=$-\frac{11}{18}$,或k=0.
故答案為:-$\frac{16}{13}$或0;$-\frac{11}{18}$或0.

點(diǎn)評(píng) 本題考查向量的共線與垂直的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.與向量$\overrightarrow{a}$=(-5,12)垂直的單位向量坐標(biāo)為($\frac{12}{13}$,$\frac{5}{13}$)或(-$\frac{12}{13}$,-$\frac{5}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)空間中A,B,C三點(diǎn)構(gòu)成一個(gè)邊長(zhǎng)為4的等邊三角形,則與三點(diǎn)距離均為1的平面有8個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)f(x,y,z)=sin2(x-y)+sin2(y-z)+sin2(z-x),x,y,z∈R,求f(x,y,z)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若4S6+3S8=96,則S7=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.己知集合A={x|2a+1≤x≤3a-5},B={x|x<-1或x>16}
(1)若A為非空集合,求實(shí)數(shù)a的取值范圍;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-|x-1|}+1,(x≠1)}\\{a,(x=1)}\end{array}\right.$,若關(guān)于x的方程2f2(x)-(2a+3)f(x)+3a=0有五個(gè)不同的實(shí)數(shù)解,則a的取值范圍是( 。
A.(0,1)B.$(0,\frac{3}{2})$C.(1,2)D.$(1,\frac{3}{2})∪$$(\frac{3}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)f(x)是定義在R上的奇函數(shù),f(x)+f(2+x)=0,當(dāng)x∈[0,2]時(shí),f(x)=(x-1)2-1,若關(guān)于x的方程f(x)-k(x-1)=0恰有三個(gè)不同的實(shí)數(shù)解,則正實(shí)數(shù)k的取值范圍為( 。
A.($\sqrt{3}$-$\sqrt{2}$,4-$\sqrt{13}$)B.(8-2$\sqrt{15}$,4-$\sqrt{13}$)C.(5-2$\sqrt{6}$,4-2$\sqrt{3}$)D.(8-2$\sqrt{15}$,4-2$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)y=f(x)在定義域內(nèi)可導(dǎo),其圖象如圖所示,則導(dǎo)函數(shù)y=f′(x)的圖象只可能是下列情形中的(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案