4.設(shè)f(x,y,z)=sin2(x-y)+sin2(y-z)+sin2(z-x),x,y,z∈R,求f(x,y,z)的最大值.

分析 由三角函數(shù)公式配方可得f(x,y,z)=$\frac{3}{2}$-$\frac{1}{4}$[(cos2x+cos2y+cos2z)2+(sin2x+sin2y+sin2z+sin2z)2-3],由二次函數(shù)可得.

解答 解:f(x,y,z)=sin2(x-y)+sin2(y-z)+sin2(z-x)
=$\frac{1}{2}$[1-cos(2x-2y)]+$\frac{1}{2}$[1-cos(2y-2z)]+$\frac{1}{2}$[1-cos(2z-2x)]
=$\frac{3}{2}$-$\frac{1}{2}$[cos(2x-2y)+cos(2y-2z)+cos(2z-2x)]
=$\frac{3}{2}$-$\frac{1}{2}$(cos2xcos2y+cos2ycos2z+cos2zcos2x+sin2xsin2y+sin2ysin2z+sin2zsin2x)
=$\frac{3}{2}$-$\frac{1}{4}$[(cos2x+cos2y+cos2z)2+(sin2x+sin2y+sin2z)2-3]
∴當(dāng)cos2x+cos2y+cos2z=sin2x+sin2y+sin2z=0時,上式取最大值$\frac{9}{4}$

點(diǎn)評 本題考查三角函數(shù)的最值,涉及三角函數(shù)公式和配方法,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.($\frac{1+i}{{\sqrt{2}}}$)2016=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.圓(x-a)2+(y-b)2=r2的圓心在x軸上,且與y軸相切,則下面關(guān)系中一定成立的是(  )
A.a=0且b=0B.b=0且r=|a|C.b=0且r=aD.b=0且r=-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.空間四邊形(四條邊不在同一平面的四邊形)中異面直線的對數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.袋中有10個大小形狀完全相同的小球,其中6個紅球,4個白球,每次從中任意摸出一個小球,連續(xù)摸三次.
(1)若采取不放回抽樣方式,求摸出的三球中至少有兩個紅球的概率;
(2)若采取有放回抽樣方式,求摸出的三球中紅球少于兩個的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)O是△ABC的外心,a、b、c分別為角A、B、C的對邊,2c2-c+b2=0,則$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范圍是( 。
A.[-$\frac{1}{4}$,2)B.(-$\frac{1}{8}$,0)C.(-$\frac{1}{8}$,$\frac{1}{24}$]D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow a=(3,2),\;\overrightarrow b=({-1,2}),\overrightarrow c=({4,1})$,若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b-\overrightarrow a)k$,則實(shí)數(shù)k的值-$\frac{16}{13}$或0,若$(\overrightarrow a+k\overrightarrow c)⊥(2\overrightarrow b-\overrightarrow a)k$,則實(shí)數(shù)k的值$-\frac{11}{18}$或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=2x+log3x的導(dǎo)數(shù)是$y'={2^x}ln2+\frac{1}{xln3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=$\sqrt{\sqrt{3}tanx-3}$的定義域?yàn)?\{x|kπ+\frac{π}{3}≤x<kπ+\frac{π}{2},k∈Z\}$.

查看答案和解析>>

同步練習(xí)冊答案