分析 由三角函數(shù)公式配方可得f(x,y,z)=$\frac{3}{2}$-$\frac{1}{4}$[(cos2x+cos2y+cos2z)2+(sin2x+sin2y+sin2z+sin2z)2-3],由二次函數(shù)可得.
解答 解:f(x,y,z)=sin2(x-y)+sin2(y-z)+sin2(z-x)
=$\frac{1}{2}$[1-cos(2x-2y)]+$\frac{1}{2}$[1-cos(2y-2z)]+$\frac{1}{2}$[1-cos(2z-2x)]
=$\frac{3}{2}$-$\frac{1}{2}$[cos(2x-2y)+cos(2y-2z)+cos(2z-2x)]
=$\frac{3}{2}$-$\frac{1}{2}$(cos2xcos2y+cos2ycos2z+cos2zcos2x+sin2xsin2y+sin2ysin2z+sin2zsin2x)
=$\frac{3}{2}$-$\frac{1}{4}$[(cos2x+cos2y+cos2z)2+(sin2x+sin2y+sin2z)2-3]
∴當(dāng)cos2x+cos2y+cos2z=sin2x+sin2y+sin2z=0時,上式取最大值$\frac{9}{4}$
點(diǎn)評 本題考查三角函數(shù)的最值,涉及三角函數(shù)公式和配方法,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=0且b=0 | B. | b=0且r=|a| | C. | b=0且r=a | D. | b=0且r=-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{4}$,2) | B. | (-$\frac{1}{8}$,0) | C. | (-$\frac{1}{8}$,$\frac{1}{24}$] | D. | (0,$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com