拋物線y2=4x的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線相交于A、B兩點(diǎn),且|AB|=7,則線段AB中點(diǎn)的橫坐標(biāo)是( )
A.2
B.
C.3
D.
【答案】分析:先根據(jù)拋物線方程求出p的值,再由拋物線的性質(zhì)可得到答案.
解答:解:拋物線y2=4x∴P=2
設(shè)經(jīng)過點(diǎn)F的直線與拋物線相交于A、B兩點(diǎn),
其橫坐標(biāo)分別為x1,x2,利用拋物線定義,
AB中點(diǎn)橫坐標(biāo)為
故選B.
點(diǎn)評(píng):本題主要考查了拋物線的性質(zhì).屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,則過點(diǎn)F和M(4,4)且與準(zhǔn)線l相切的圓的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F.
(1)若直線l過點(diǎn)M(4,0),且F到直線l的距離為2,求直線l的方程;
(2)設(shè)A,B為拋物線上兩點(diǎn),且AB不與X軸垂直,若線段AB中點(diǎn)的橫坐標(biāo)為2.求證:線段AB的垂直平分線恰過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),且AF=2BF,則A點(diǎn)的坐標(biāo)為
(5,2
2
)或(5,-2
2
(5,2
2
)或(5,-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽(yáng)二模)已知拋物線y2=4x的焦點(diǎn)為F,過F的直線與該拋物線相交于A(x1,y1),B(x2,y2)兩點(diǎn),則
y
2
1
+
y
2
2
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)在拋物線
y
2
 
=4x
的焦點(diǎn)為圓心,并與拋物線的準(zhǔn)線相切的圓的方程是
(x-1)2+y2=4
(x-1)2+y2=4

查看答案和解析>>

同步練習(xí)冊(cè)答案