【題目】設(shè)函數(shù),,其中,是自然對(duì)數(shù)的底數(shù).

1)設(shè),當(dāng)時(shí),求的最小值;

2)證明:當(dāng),時(shí),總存在兩條直線與曲線都相切;

3)當(dāng)時(shí),證明:.

【答案】(1)最小值(2)證明見解析(3)證明見解析

【解析】

(1)求出的解析式,求導(dǎo)求單調(diào)性,然后則可求出最小值.2)總存在兩條直線與曲線都相切,及永遠(yuǎn)都存在兩條公切線,分別設(shè)出切點(diǎn)求出切線方程,根據(jù)切線方程為同一條,列出方程組求解,證明等式恒成立即可.3)即證明當(dāng)時(shí),.,求導(dǎo)求令的最小值大于0即可.

解:(1,,

當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增,

時(shí),取得最小值.

2)∵,

在點(diǎn)處的切線方程為;

,

在點(diǎn)處的切線方程為.

由題意得,則.

,則,

由(1)得時(shí),單調(diào)遞增,又時(shí),,

∴當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增.

由(1)得,

,

,所以函數(shù)內(nèi)各有一個(gè)零點(diǎn),

故當(dāng)時(shí),總存在兩條直線與曲線都相切.

3.

,以下證明當(dāng)時(shí),的最小值大于0.

求導(dǎo)得.

①當(dāng)時(shí),;

②當(dāng)時(shí),,

,

,取且使,即

,

,存在唯一零點(diǎn),

有唯一的極值點(diǎn)且為極小值點(diǎn),又

,即,故,

,故上的減函數(shù).

,所以.

綜上,當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).其中.

1)討論函數(shù)的單調(diào)性;

2)函數(shù)處存在極值-1,且時(shí),恒成立,求實(shí)數(shù)的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,,平面PAB,,點(diǎn)E滿足.

1)證明:;

2)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】螞蟻森林是支付寶客戶端為首期“碳賬戶”設(shè)計(jì)的一款公益行動(dòng):用戶通過(guò)步行、地鐵出行、在線繳納水電煤氣費(fèi)、網(wǎng)絡(luò)掛號(hào)、網(wǎng)絡(luò)購(gòu)票等行為就會(huì)減少相應(yīng)的碳排放量,可以用來(lái)在支付寶里養(yǎng)一棵虛擬的樹.這棵樹長(zhǎng)大后,公益組織、環(huán)保企業(yè)等螞蟻生態(tài)伙伴們可以在現(xiàn)實(shí)沙漠化地區(qū)(阿拉善、通遼、庫(kù)布齊等)種下一棵實(shí)體的樹目前通遼地區(qū)對(duì)部分基地樟子松幼苗的培育技術(shù)進(jìn)行了改進(jìn),為了了解改進(jìn)后的效果,現(xiàn)從改進(jìn)前后的樹苗培育基地各抽取了株產(chǎn)品作為樣本,檢測(cè)其同樣生長(zhǎng)周期的高度(單位:),若高度不低于才適合移植,否則繼續(xù)等待生長(zhǎng)圖1是改進(jìn)前的樣本的頻率分布直方圖,表2是改進(jìn)后的樣本頻率分布表.

1

2技術(shù)改進(jìn)后樣本的頻率分布表

高度

頻數(shù)

1)根據(jù)圖1和表2提供的信息,試從移植率的角度對(duì)培育技術(shù)改進(jìn)前后的優(yōu)劣進(jìn)行比較;

2)估計(jì)培育技術(shù)未改進(jìn)的基地樹苗高度的平均數(shù);

3)在市場(chǎng)中,規(guī)定高度在內(nèi)的為三等苗,內(nèi)的為二等苗,內(nèi)的為一等苗.現(xiàn)從表2高度不低于的樹苗樣本中采用分層抽樣的方法抽取株,再?gòu)倪@株幼苗中隨機(jī)抽取株,求這株中一、二、三等苗都有的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求證:函數(shù)內(nèi)單調(diào)遞增;

2)記為函數(shù)的反函數(shù).若關(guān)于的方程上有解,求的取值范圍;

3)若對(duì)于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),是函數(shù)的導(dǎo)數(shù).

1)若上的單調(diào)函數(shù),求的值;

2)當(dāng)時(shí),求證:若,且,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖(1)為東方體育中心,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線如圖(2)所示;曲線是以點(diǎn)為圓心的圓的一部分,其中,曲線是拋物線的一部分;恰好等于圓的半徑,與圓相切且.

1)若要求米,米,求的值;

2)當(dāng)時(shí),若要求不超過(guò)45米,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,焦距為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)不過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),且直線、的斜率依次成等比數(shù)列,問:直線是否定向的,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的一個(gè)頂點(diǎn)為,焦點(diǎn)在x軸上,若右焦點(diǎn)到直線的距離為3

求橢圓C的方程;

設(shè)橢圓C與直線相交于不同的兩點(diǎn)MN,線段MN的中點(diǎn)為E

當(dāng)時(shí),射線OE交直線于點(diǎn)為坐標(biāo)原點(diǎn),求的最小值;

當(dāng),且時(shí),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案