【題目】如圖,在四棱錐P-ABCD中,,平面PAB,,點(diǎn)E滿足.
(1)證明:;
(2)求二面角A-PD-E的余弦值.
【答案】(1)證明見(jiàn)解析 (2)
【解析】
(1)由勾股定理計(jì)算出,然后求數(shù)量積得,由線面垂直可得,從而可證得平面ABCD得證線線垂直;
(2)建立如圖所示的直角坐標(biāo)系,用空間向量法求二面角的余弦值.
(1)證明:在中,
由勾股定理,得
.
因?yàn)?/span>,
所以
.
所以,所以.
因?yàn)?/span>平面PAB,平面PAB,
所以.
又因?yàn)?/span>,
所以平面ABCD.
又因?yàn)?/span>平面ABCD,
所以.
(2)由得.
所以點(diǎn)E是靠近點(diǎn)A的線段AB的三等分點(diǎn).
所以.
分別以所在方向?yàn)?/span>y軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.
則.
設(shè)平面PDE的法向量為,
由,得.
令,則;
設(shè)平面APD的法向量為,
由,得,
令,則.
設(shè)向量與的夾角為,
則.
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知雙曲線:.
(1)設(shè)是的左焦點(diǎn),是右支上一點(diǎn).若,求點(diǎn)的坐標(biāo);
(2)設(shè)斜率為1的直線交于、兩點(diǎn),若與圓相切,求證:;
(3)設(shè)橢圓:.若、分別是、上的動(dòng)點(diǎn),且,求證:到直線的距離是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,三邊長(zhǎng)a,b,c滿足a2﹣a﹣2b﹣2c=0,a+2b﹣2c+3=0,則這個(gè)三角形最大角的大小為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖和90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布圖(90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生),則下列結(jié)論中不一定正確的是( )
整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖 90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布圖
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
C.互聯(lián)網(wǎng)行業(yè)中從事設(shè)計(jì)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事市場(chǎng)崗位的90后人數(shù)不足總?cè)藬?shù)的10%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線l與橢圓C交于P,Q兩點(diǎn),且點(diǎn)M滿足.
(1)若點(diǎn),求直線的方程;
(2)若直線l過(guò)點(diǎn)且不與x軸重合,過(guò)點(diǎn)M作垂直于l的直線與y軸交于點(diǎn),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若是一個(gè)集合,是一個(gè)以的某些子集為元素的集合,且滿足:(1)屬于,屬于;(2)中任意多個(gè)元素的并集屬于;(3)中任意多個(gè)元素的交集屬于,則稱(chēng)是集合上的一個(gè)拓補(bǔ).已知集合,對(duì)于下面給出的四個(gè)集合:
①②
③④
其中是集合上的拓補(bǔ)的集合的序號(hào)是______.(寫(xiě)出所有的拓補(bǔ)的集合的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足:,,.
(1)求的值;
(2)設(shè),求證:數(shù)列是等比數(shù)列,并求出其通項(xiàng)公式;
(3)對(duì)任意的,,在數(shù)列中是否存在連續(xù)的項(xiàng)構(gòu)成等差數(shù)列?若存在,寫(xiě)出這項(xiàng),并證明這項(xiàng)構(gòu)成等差數(shù)列:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,其中,是自然對(duì)數(shù)的底數(shù).
(1)設(shè),當(dāng)時(shí),求的最小值;
(2)證明:當(dāng),時(shí),總存在兩條直線與曲線與都相切;
(3)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論中:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.
其中正確的有____________(把所有正確的序號(hào)都填上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com