【題目】如圖,圓與長軸是短軸兩倍的橢圓:相切于點(diǎn)
(1)求橢圓與圓的方程;
(2)過點(diǎn)引兩條互相垂直的兩直線與兩曲線分別交于點(diǎn)與點(diǎn)(均不重合).若為橢圓上任一點(diǎn),記點(diǎn)到兩直線的距離分別為,求的最大值,并求出此時(shí)的坐標(biāo).
【答案】(1)橢圓方程為,圓的方程為;(2)的最大值為,此時(shí).
【解析】
(1)根據(jù)點(diǎn)坐標(biāo)求得,結(jié)合長軸是短軸兩倍求得,由此求得橢圓方程以及圓的方程.
(2)設(shè)出點(diǎn)坐標(biāo),結(jié)合以及矩形的幾何性質(zhì)求得的表達(dá)式,并由此求得的最大值,以及此時(shí)的坐標(biāo).
(1)由于,所以,由于橢圓長軸是短軸兩倍,所以,圓的半徑為,所以橢圓方程為,圓的方程為.
(2)設(shè),則,①,由于,設(shè)如下圖所示,所以四邊形是矩形,所以,將①代入上式并化簡得,,因?yàn)?/span>,所以當(dāng)時(shí),取得最大值為,,所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源分時(shí)租賃汽車”.其中一款新能源分時(shí)租賃汽車,每次租車收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:①根據(jù)行駛里程數(shù)按1元/公里計(jì)費(fèi);②行駛時(shí)間不超過分時(shí),按元/分計(jì)費(fèi);超過分時(shí),超出部分按元/分計(jì)費(fèi).已知王先生家離上班地點(diǎn)公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費(fèi)的時(shí)間 (分)是一個(gè)隨機(jī)變量.現(xiàn)統(tǒng)計(jì)了次路上開車花費(fèi)時(shí)間,在各時(shí)間段內(nèi)的頻數(shù)分布情況如下表所示:
時(shí)間(分) | ||||
頻數(shù) |
將各時(shí)間段發(fā)生的頻率視為概率,每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分.(1)寫出王先生一次租車費(fèi)用(元)與用車時(shí)間(分)的函數(shù)關(guān)系式;(2)若王先生一次開車時(shí)間不超過分為“路段暢通”,設(shè)表示3次租用新能源分時(shí)租賃汽車中“路段暢通”的次數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于雙曲線,若點(diǎn)P(x0,y0)滿足,則稱P在的外部,若點(diǎn)P(x0,y0)滿足>1,則稱在的內(nèi)部;
(1)若直線y=kx+1上的點(diǎn)都在C(1,1)的外部,求k的取值范圍;
(2)若C(a,b)過點(diǎn)(2,1),圓x2+y2=r2(r>0)在C(a,b)內(nèi)部及C(a,b)上的點(diǎn)構(gòu)成的圓弧長等于該圓周長的一半,求b、r滿足的關(guān)系式及r的取值范圍;
(3)若曲線|xy|=mx2+1(m>0)上的點(diǎn)都在C(a,b)的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的左右焦點(diǎn)分別為F1,F2,離心率為,A為橢圓C上一點(diǎn),且AF2⊥F1F2,且|AF2|.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)為A1,A2,過A1,A2分別作x軸的垂線 l1,l2,橢圓C的一條切線l:y=kx+m(k≠0)與l1,l2交于M,N兩點(diǎn),試探究是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,,且對(duì)一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè),記數(shù)列的前項(xiàng)和為,求正整數(shù),使得對(duì)任意,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期并求出單調(diào)遞增區(qū)間;
(2)在中,角A,B,C的對(duì)邊分別是a,b,c,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、E、F為山腳兩側(cè)共線的三點(diǎn),在山頂A處測(cè)得這三點(diǎn)的俯角分別為、、,計(jì)劃沿直線BF開通穿山隧道,現(xiàn)已測(cè)得BC、DE、EF三段線段的長度分別為3、1、2.
(1)求出線段AE的長度;
(2)求出隧道CD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P為“C1—C2型點(diǎn)”.
(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線與有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com