【題目】若集合A={x|x2<2x},集合B={x|x< },則A∩(RB)等于( )
A.(﹣2, ]
B.(2,+∞)
C.(﹣∞, ]
D.D[ ,2)
【答案】D
【解析】解:∵x2<2x,即x(x﹣2)<0,解得0<x<2,
∴A=(0,2),
B={x|x< }=(﹣∞, ),
∴RB=[ ,+∞),
∴A∩(RB)=[ ,2),
故選:D.
【考點(diǎn)精析】利用交、并、補(bǔ)集的混合運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費(fèi)用(萬(wàn)元)有如下統(tǒng)計(jì)資料:
/年 | 2 | 3 | 4 | 5 | 6 |
/萬(wàn)元 |
若由資料知, 對(duì)呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
參考公式:回歸直線方程: .其中
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在處的切線方程;
(2)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:對(duì)于任意的 ,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),且橢圓經(jīng)過(guò)點(diǎn), ,拋物線過(guò)點(diǎn).
(Ⅰ)求、的標(biāo)準(zhǔn)方程;
(Ⅱ)請(qǐng)問(wèn)是否存在直線滿(mǎn)足條件:
①過(guò)的焦點(diǎn);②與交不同兩點(diǎn)、且滿(mǎn)足.
若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x(1+a|x|),a∈R.
(1)當(dāng)a=-1時(shí),求函數(shù)的零點(diǎn);
(2)若函數(shù)f(x)在R上遞增,求實(shí)數(shù)a的取值范圍;
(3)設(shè)關(guān)于x的不等式f(x+a)<f(x)的解集為A,若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一年級(jí)學(xué)生全部參加了體育科目的達(dá)標(biāo)測(cè)試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測(cè)試成績(jī),整理數(shù)據(jù)并按分?jǐn)?shù)段進(jìn)行分組,假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,則得到體育成績(jī)的折線圖(如下):
(Ⅰ)體育成績(jī)大于或等于70分的學(xué)生常被稱(chēng)為“體育良好”.已知該校高一年級(jí)有1000名學(xué)生,試估計(jì)高一全年級(jí)中“體育良好”的學(xué)生人數(shù);
(Ⅱ)為分析學(xué)生平時(shí)的體育活動(dòng)情況,現(xiàn)從體育成績(jī)?cè)?/span>和的樣本學(xué)生中隨機(jī)抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績(jī)?cè)?/span>的概率;
(Ⅲ)假設(shè)甲、乙、丙三人的體育成績(jī)分別為且分別在三組中,其中當(dāng)數(shù)據(jù)的方差最小時(shí),寫(xiě)出的值.(結(jié)論不要求證明)
(注: ,其中為數(shù)據(jù)的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為奇函數(shù), 為常數(shù).
(1)確定的值;
(2)求證: 是上的增函數(shù);
(3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=lnx﹣ax2+x有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(0,1)
B.(﹣∞,1)
C.(﹣∞, )
D.(0, )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com