【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
(2)設(shè)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x1)+f(x2)>﹣5.
【答案】
(1)解:∵f′(x)=x﹣a+ = ,
∴k=f′(1)=4﹣2a,
∵曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,
∴k=﹣ ,
∴4﹣2a=﹣ ,
解得a=
(2)解:由題意,x1,x2為f′(x)=0的兩根,
∴ ,
∴2<a<3,
又∵x1+x2=a,x1x2=3﹣a,
∴f(x1)+f(x2)= (x12+x22)﹣a(x1+x2)+(3﹣a)lnx1x2,
=f(x)=﹣ a2+a﹣3+(3﹣a)ln(3﹣a),
設(shè)h(a)=﹣ a2+a﹣3+(3﹣a)ln(3﹣a),a∈(2,3),
則h′(a)=﹣a﹣ln(3﹣a),
∴h″(a)=﹣1+ = >0,
故h′(a)在(2,3)遞增,又h′(2)=﹣2<0,
當(dāng)a→3時,h′(a)→+∞,
∴a0∈(2,3),
當(dāng)a∈(2,a0)時,h(a)遞減,當(dāng)a∈(a0,3)時,h(a)遞增,
∴h(a)min=h(a0)=﹣ a02+a0﹣3+(3﹣a0)ln(3﹣a0)>﹣ a02+a0﹣3+(3﹣a0)(﹣a0)= a02﹣2a0﹣3= (a0﹣2)2﹣5>﹣5.
∴a∈(2,3),h(a)>﹣5,
綜上,f(x1)+f(x2)>﹣5
【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求出a的值,(2)根據(jù)x1 , x2為f′(x)=0的兩根,求出a的范圍,再根據(jù)韋達(dá)定理得到f(x1)+f(x2)=﹣ a2+a﹣3+(3﹣a)ln(3﹣a),構(gòu)造函數(shù)h(a)=﹣ a2+a﹣3+(3﹣a)ln(3﹣a),a∈(2,3),求出函數(shù)的最小值大于5即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C1:y2=8x的準(zhǔn)線與x軸交于點F1 , 焦點為F2 . 以F1 , F2為焦點,離心率為 的橢圓記為C2 . (Ⅰ)求橢圓C2的方程;
(Ⅱ)設(shè)N(0,﹣2),過點P(1,2)作直線l,交橢圓C2于異于N的A、B兩點.
(。┤糁本NA、NB的斜率分別為k1、k2 , 證明:k1+k2為定值.
(ⅱ)以B為圓心,以BF2為半徑作⊙B,是否存在定⊙M,使得⊙B與⊙M恒相切?若存在,求出⊙M的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x2)≥( ﹣1)x2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設(shè)M為BD的中點,求異面直線AD與CM所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ex﹣a , g(x)=ln(x+2)﹣4ea﹣x , 其中e為自然對數(shù)的底數(shù),若存在實數(shù)x0 , 使f(x0)﹣g(x0)=3成立,則實數(shù)a的值為( )
A.﹣ln2﹣1
B.﹣1+ln2
C.﹣ln2
D.ln2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的導(dǎo)函數(shù)為f'(x).
(Ⅰ)判斷f(x)的單調(diào)性;
(Ⅱ)若關(guān)于x的方程f'(x)=m有兩個實數(shù)根x1 , x2(x1<x2),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域是(0, ),f′(x)是它的導(dǎo)函數(shù),且f(x)+tanxf′(x)>0在定義域內(nèi)恒成立,則( )
A.f( )> f( )
B. sin1?f(1)>f( )
C.f( )> f( )
D. f( )> f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a,b,c滿足a,b,c∈R+ .
(Ⅰ)若ab=1,證明:( + )2≥4;
(Ⅱ)若a+b+c=3,且 + + ≤|2x﹣1|﹣|x﹣2|+3恒成立,求x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com