8.已知f(α)=($\frac{cos\frac{α}{2}}{sin\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{2sinα}$.求f($\frac{π}{4}$)的值.

分析 利用同角三角函數(shù)基本關(guān)系式化簡表達(dá)式,然后代入數(shù)值求解即可.

解答 解:f(α)=($\frac{cos\frac{α}{2}}{sin\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{2sinα}$=$\frac{co{s}^{2}\frac{α}{2}-si{n}^{2}\frac{α}{2}}{sin\frac{α}{2}cos\frac{α}{2}}$•$\frac{1-cos2α}{2sinα}$
=$\frac{2cosα}{sinα}$•$\frac{1-cos2α}{2sinα}$;
f($\frac{π}{4}$)=2×$\frac{1}{2×\frac{\sqrt{2}}{2}}$=$\sqrt{2}$.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在復(fù)平面上,已知復(fù)數(shù)z1與z2的對應(yīng)點(diǎn)關(guān)于直線y=x對稱,且滿足z1z2=9i,則|z1|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過P(a,b)向圓(x-2)2+(y-3)2=1引切線PT,T為切點(diǎn),若|PT|=|PO|(O為坐標(biāo)原點(diǎn)),則切線|PT|的最小值為$\frac{{6\sqrt{13}}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)x1,x2是方程2x2-6x+3=0的兩個根,不解方程,求下列各式的值
(1)(x1-3)(x2-3);
(2)$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$;
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若A={x2,xy},B={1,y},且A=B,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠DAB為直角,AB∥CD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點(diǎn).
(Ⅰ)證明:AB⊥平面BEF:
(Ⅱ)設(shè)PA=h,若二面角E-BD-C大于45°,求h的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.?dāng)?shù)列{an}的通項(xiàng)公式an=n•sin$\frac{nπ}{2}$+1,前n項(xiàng)和為Sn,則S2015=( 。
A.504B.1006C.1007D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}中,a1=1,an+1=$\frac{\sqrt{2}{a}_{n}}{\sqrt{{{a}_{n}}^{2}+2}}$(n∈N*
(1)證明{$\frac{1}{{{a}_{n}}^{2}}$}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a}_{n}}^{2}}$,數(shù)列{bn}的前n項(xiàng)和為Sn,已知存在正整數(shù)m,使得$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<m對n∈N+恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知二項(xiàng)式${(ax+\frac{1}{x})^4}$的展開式中x2項(xiàng)的系數(shù)為32,則實(shí)數(shù)a=2.

查看答案和解析>>

同步練習(xí)冊答案