10.已知二項(xiàng)式${(ax+\frac{1}{x})^4}$的展開(kāi)式中x2項(xiàng)的系數(shù)為32,則實(shí)數(shù)a=2.

分析 利用二項(xiàng)式定理的通項(xiàng)公式即可得出.

解答 解:二項(xiàng)式${(ax+\frac{1}{x})^4}$的展開(kāi)式的通項(xiàng)Tr+1=C4ra4-rx4-2r,
令4-2r=2,解得r=1.
∴C41a3=32,
化為:a3=8,
解得a=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的性質(zhì)及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(α)=($\frac{cos\frac{α}{2}}{sin\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{2sinα}$.求f($\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,則該雙曲線的離心率為$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.當(dāng)x∈(0,+∞),冪函數(shù)y=(m2-m-1)xm為減函數(shù),則實(shí)數(shù)m的值為(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.(1)命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”.
(2)“x=1”是“x2-4x+3=0”的充要條件;
(3)若p∧q為假命題,則p、q均為假命題.
(4)對(duì)于命題p:?x0∈R,x${\;}_{0}^{2}$+2x0+2≤0,則¬p:?x∈R,x2+2x+2>0.
上面四個(gè)命題中正確的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的漸近線方程為y=$±\frac{3}{4}x$;離心率為$\frac{5}{4}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知拋物線C:y2=2px(p>0)的焦點(diǎn)到直線$\sqrt{3}y-x=0$的距離為2,則拋物線C的方程為( 。
A.${y^2}=\frac{{16\sqrt{3}}}{3}x$B.${y^2}=\frac{{8\sqrt{3}}}{3}x$C.y2=16xD.y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知球O的一個(gè)內(nèi)接三棱錐P-ABC,其中△ABC是邊長(zhǎng)為2的正三角形,PC為球O的直徑,且PC=4,則此三棱錐的體積為$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,AA1,BB1均垂直于平面ABC和平面A1B1C1,∠BAC=∠A1B1C1=90°,AC=AB=A1A=B1C1=$\sqrt{2}$,則多面體ABC-A1B1C1的外接球的表面積為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案