已知函數(shù)f(x)=x3+ax2-3x的導(dǎo)函數(shù)為f′(x),且函數(shù)f′(x)的對稱軸為x=-1.
(1)求a的值;
(2)求曲線y=f(x)在點(1,f(1))處的切線方程.
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程,導(dǎo)數(shù)的運(yùn)算
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求導(dǎo)數(shù),利用函數(shù)f′(x)的對稱軸為x=-1,即可求a的值;
(2)求出切線的斜率,切點的坐標(biāo),即可求曲線y=f(x)在點(1,f(1))處的切線方程.
解答: 解:(1)∵f(x)=x3+ax2-3x,
∴f′(x)=3x2+2ax-3,
∵函數(shù)f′(x)的對稱軸為x=-1,
∴-
a
3
=-1,
∴a=3;
(2)f′(x)=3x2+6x-3,
∴f′(1)=6,f(1)=1,
∴曲線y=f(x)在點(1,f(1))處的切線方程為y-1=6(x-1),即6x-y-5=0.
點評:本題考查了利用導(dǎo)數(shù)的幾何意義:即在某點處的導(dǎo)數(shù)即在該點處的切線的斜率,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:
x+1
x+2
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式an=
1
2n
(n∈N),若bn=log 
1
2
an2,且Sn是數(shù)列{bn}的前n項和,當(dāng)n≥5時,試證明anSn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-2)2=1,過P(1,0),作圓C的切線,切點A,B.
(1)求直線PA、PB的直線方程;
(2)求弦長|AB|;
(3)若Q點是x軸上的動點,過Q點作圓C的切線.切點為G、H,求四邊形GCHQ的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面是邊長為2的菱形,且∠BAD=60°,PA⊥平面ABCD,設(shè)E為BC的中點,二面角P-DE-A為45°.
(1)求點A到平面PDE的距離;
(2)在PA上確定一點F,使BF∥平面PDE;
(3)求異面直線PC與DE所成的角(用反三角函數(shù)表示);
(4)求面PDE與面PAB所成的不大于直二面角的二面角的大小(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=2an-4n+7,其中n=1,2,3,….
(Ⅰ)計算a2,a3,a4的值;
(Ⅱ)根據(jù)計算結(jié)果猜想{an}的通項公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sinωxsin(ωx+
π
3
)+k(ω>0,k為常數(shù)).
(1)若f(x)的圖象中相鄰兩對稱軸之間的距離不小于
π
2
,求ω的取值范圍;
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
π
6
]時,f(x)的最大值是
1
2
,又f(α)=
3
5
,求f(
π
2
-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=
1
2
BD.
(1)求證:BF∥平面ACE;
(2)求證:平面EAC⊥平面BDEF
(3)求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場想通過檢查發(fā)票及銷售記錄的2%來快速估計每月的銷售總額,現(xiàn)采用系統(tǒng)抽樣,從某本50張的發(fā)票存根中隨機(jī)抽取1張,如15號,然后按順序往后抽,依次為15,65,115…,則第5個號是
 

查看答案和解析>>

同步練習(xí)冊答案