10.已知{an}是等差數(shù)列,且a1+a3+a8+a10=46,則a6+a5=( 。
A.12B.16C.20D.23

分析 由等差數(shù)列的性質(zhì)可得:a1+a3+a8+a10=2(a6+a5),即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a1+a3+a8+a10=2(a6+a5)=46,
解得a6+a5=23.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知二次函數(shù)f(x)=a(x+b)2+c.
(1)若x=-1,函數(shù)f(x)有最小值0,且f(1)=1,求函數(shù)f(x)的解析式;
(2)若f(x)在(-$\frac{1}{2}$,+∞)上單調(diào)遞增,且f(x)的頂點(diǎn)在x軸上,求滿足f(2)+mf(-2)=mf(1)的實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知A,B,C是△ABC的三個(gè)內(nèi)角,設(shè)f(B)=4sinBcos2($\frac{π}{4}$+$\frac{B}{2}$)+cos2B,若f(B)-m<2恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m>$\frac{5}{4}$B.m<-$\frac{3}{4}$C.m>1D.m>-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.與雙曲$\frac{{y}^{2}}{4}$-x2=1有共同的漸近線,且過(guò)點(diǎn)(2,2)的雙曲線標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知不等式|x-2|>1的解集與關(guān)于x的不等式x2-ax+b>0的解集相等.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)=$\sqrt{x-b}$+$\sqrt{a-x}$的最大值,以及取得最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)點(diǎn)O在△ABC的內(nèi)部,且有$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow 0$,則△AOB的面積與△ABC的面積之比為( 。
A.$\frac{1}{3}$B.$\frac{5}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(-3,0),對(duì)稱軸為x=-1.給出下面四個(gè)結(jié)論:
①b2>4ac; 
②2a-b=1; 
③a-b+c=0; 
④5a<b.
其中正確的是( 。
A.②④B.①④C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合A={1,2,3},B={y|y=3x-2,x∈A},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,1),則|2$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案