4.已知函數(shù)f(x)=$\frac{2}{{2}^{x}+1}$+sinx,求f(-2)+f(-1)+f(0)+f(1)+f(2)的值.

分析 根據(jù)條件求出函數(shù)f(x)+f(-x)=2,進(jìn)行求解即可.

解答 解:∵f(x)+f(-x)=$\frac{2}{{{2^x}+1}}+sinx+\frac{2}{{{2^{-x}}+1}}-sinx=\frac{2}{{{2^x}+1}}+\frac{{{2^{x+1}}}}{{1+{2^x}}}=2$,且f(0)=1,
∴f(-2)+f(-1)+f(0)+f(1)+f(2)=5.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)條件求出f(x)+f(-x)=2是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線l過點(diǎn)(1,0)和點(diǎn)($0,\sqrt{3}$),則直線l的傾斜角的大小是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中若A=45°,a=$\sqrt{3}$,則$\frac{a+b}{sinA+sinB}$等于$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知隨機(jī)變量ξ+η=8,若ξB(10,0.4),則E(η),D(η)分別是( 。
A.4和2.4B.2和2.4C.6和2.4D.4和5.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知拋物線y2=4x與雙曲線$\frac{x^2}{a^2}-{y^2}=1$的一個(gè)交點(diǎn)為M,F(xiàn)為拋物線的焦點(diǎn),若MF=3,則該雙曲線的離心率為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{{2^x},x<0}\end{array}}\right.$,則f(f(-1))的值等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2+ax+b(a,b∈R),g(x)=2x2-4x-16,且|f(x)|≤|g(x)|對(duì)x∈R恒成立.
(1)求a、b的值;
(2)記h(x)=-$\frac{1}{2}$f(x)-4,那么當(dāng)k≥$\frac{1}{2}$時(shí),是否存在區(qū)間[m,n](m<n),使得函數(shù)h(x)在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請(qǐng)求出區(qū)間[m,n];若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的為( 。
A.②④B.③④C.①②D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-4≤0\\ 2x-y+1≥0\\ x+4y-4≥0\end{array}\right.$,則z=2|x-4|+|y-3|的取值范圍是[3,10].

查看答案和解析>>

同步練習(xí)冊(cè)答案