16.已知雙曲線x2-$\frac{y^2}{b^2}$=1(b>0)的虛軸長是實軸長的2倍,則實數(shù)b=2.

分析 求出雙曲線的實軸長,虛軸長,利用已知條件得到方程求解即可.

解答 解:雙曲線x2-$\frac{y^2}{b^2}$=1(b>0)的虛軸長是2b,實軸長:2,
虛軸長是實軸長的2倍,可得2b=4,
解得b=2.
故答案為:2.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=$\frac{1}{2}$arcsinx的定義域是[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$],求此函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在腰長為2的等腰直角三角形內(nèi)任取一點,則使得該點到此三角形的三個頂點的距離都不小于1的概率為( 。
A.1-$\frac{π}{2}$B.1-$\frac{π}{4}$C.1-$\frac{π}{8}$D.1-$\frac{π}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,a5+a6=10,則其前10項和S10的值是( 。
A.10B.50C.60D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若變量x,y滿足約束條件$\left\{{\begin{array}{l}{4x+3y-25≤0}\\{x-2y+2≤0}\\{x-1≥0}\end{array}}\right.$,則$\sqrt{{x^2}+{y^2}}$的最大值為5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C的左右焦點為F1,F(xiàn)2,P雙曲線右支上任意一點,若以F1為圓心,以$\frac{1}{2}$|F1F2|為半徑的圓與以P為圓心,|PF2|為半徑的圓相切,則C的離心率為( 。
A.$\sqrt{2}$B.2C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(sinα,$\frac{3}{4}$),$\overrightarrow$=(cosα,$\frac{\sqrt{3}}{4}$),α∈(0,π),且$\overrightarrow{a}$∥$\overrightarrow$,則α=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{\frac{1}{2}{x}^{2}-3x+\frac{7}{2},x∈[1,+∞)}\end{array}\right.$,則關(guān)于x的方程f(x)+a=0(0<a<1)的所有根之和為( 。
A.1-($\frac{1}{2}$)aB.($\frac{1}{2}$)a-1C.1-2aD.2a-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線經(jīng)過圓x2+y2-4x+2y=0的圓心,焦點到漸近線的距離為2,則雙曲線C的標準方程是(  )
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步練習(xí)冊答案