3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a>b>0),A1,A2是雙曲線實軸的兩個端點,MN是垂直于實軸所在直線的弦的兩個端點,則A1M與A2N交點的軌跡方程是(  )
A.$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1B.$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1C.$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1D.$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1

分析 利用交軌法來求直線MA1和NA2的交點的軌跡方程,先根據(jù)已知條件求出A1、A2點的坐標,設M(x0,y0),則N(x0,-y0),求出直線MA1和NA2的方程,聯(lián)立方程,方程組的解為直線MA1和NA2交點的坐標,再把M點坐標(x0,y0)用x,y表示,代入雙曲線方程,化簡即得軌跡的方程.

解答 解:∵A1、A2是雙曲線的左、右頂點,∴A1(-a,0),A2(a,0)
∵MN是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的弦,且MN與x軸垂直,∴設M(x0,y0),則N(x0,-y0
則直線MA1和NA2的方程分別為y=$\frac{{y}_{0}}{{x}_{0}+a}$(x+a),y=$\frac{-{y}_{0}}{{x}_{0}-a}$(x-a)
聯(lián)立兩方程,解得x0=$\frac{{a}^{2}}{x}$,y0=$\frac{ay}{x}$,
∵M(x0,y0)在雙曲線上,代入雙曲線方程,得$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1
即直線MA1和NA2的交點的軌跡C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1.
故選:A.

點評 本題主要考查了交軌法求軌跡方程,考查學生分析解決問題的能力,考查學生的計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}$sin2x+cosx,x∈R.
(1)證明:f(x)的最小正周期為2π;
(2)若關于x的方程f(x)-a=0在區(qū)間[$\frac{π}{6}$,π]上有兩個不同的實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在平面直角坐標系中,已知點M(0,-1),N(0,1),動點P滿足PM=$\sqrt{2}$PN.
(1)求點P的軌跡C1的方程,并說明是什么曲線
(2)二次函數(shù)f(x)=x2+2x-3的圖象與兩坐標軸交于三點,過這三點的圓記為C2,求證C1、C2有兩個公共點,并求出這兩個公共點間距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=x+$\frac{a}{x}$+1的值域為(-∞,-1]∪[3,+∞),則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(x,-4),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設數(shù)列{an}的前n項和為Sn,a1=4,數(shù)列{$\sqrt{{S}_{n}}$}是公差為2的等差數(shù)列.求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知中心在原點,焦點在x軸上的橢圓C的離心率為$\frac{1}{2}$,且經過點M(1,$\frac{3}{2}$).求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,是一個長方體截去一個角所得多面體的直觀圖以及它的正視圖(單位:cm),其中BC=4cm,EA=2cm.
(1)按照畫三視圖的要求畫出該多面體的側視圖和俯視圖;
(2)按照給出的尺寸,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow a=({sin({2x+\frac{π}{6}}),1})$,$\overrightarrow b=({\sqrt{3},cos({2x+\frac{π}{6}})})$,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調遞減區(qū)間;
(Ⅱ)在△ABC中,A、B、C的對邊分別是a、b、c,若$f(A)=\sqrt{3},sinC=\frac{1}{3},a=3$,求b的值.

查看答案和解析>>

同步練習冊答案