設全集U=R,集合A={x|x≤1},集合B={x|0<x<2}.
(Ⅰ)求∁U(A∪B);
(Ⅱ)求∁U(A∩B).
考點:交、并、補集的混合運算
專題:集合
分析:(Ⅰ)由A與B求出A與B的并集,找出并集的補集即可;
(Ⅱ)由A與B求出A與B的交集,找出交集的補集即可.
解答: 解:(Ⅰ)∵全集U=R,A={x|x≤1},B={x|0<x<2},
∴A∪B={x|x<2},
則∁U(A∪B)={x|x≥2};
(Ⅱ)∵全集U=R,A={x|x≤1},B={x|0<x<2},
∴A∩B={x|0<x≤1},
則∁U(A∩B)={x|x≤0或x>1}.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,an>0,a1=
1
2
,如果an+1是1與
2anan+1+1
4-an2
的等比中項,那么a1+
a2
22
+
a3
32
+
a4
42
+…+
a100
1002
的值是( 。
A、
100
99
B、
101
100
C、
100
101
D、
99
100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanβ=
1
2
,β∈(π,2π),求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為2的正方體ABCD-A1B1C1D1中,正方形BCC1B1所在平面內的動點P到直線D1C1DC的距離之和為2
2
,∠CPC1=60°,則點P到直線CC1的距離為(  )
A、
3
3
B、
3
2
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=asinx+b
3x
+4(其中a,b為常數(shù)),若f(2)=5,則f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且∠F1PF2=
π
3
,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為( 。
A、3
B、
4
3
3
C、2
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=k(x-2)+6與雙曲線x2-y2=1恒有公共點則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O,A,B是平面上的三個點,直線AB上有一點C,滿足2
AC
+
CB
=0,若
OA
=a,
OB
=b,則
OC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角梯形ABCD中,AD∥BC,AD=AB=
1
2
BC=2,∠ABC=90°,△PAB是等邊三角形,平面PAB⊥平面ABCD.
(1)求二面角P-CD-B的余弦值;
(2)求B到平面PDC的距離.

查看答案和解析>>

同步練習冊答案