15.定積分$\int_0^π{(sinx-cosx})dx$的值為( 。
A.-1B.-2C.2D.π

分析 根據(jù)定積分的計(jì)算法則計(jì)算可.

解答 解:$\int_0^π{(sinx-cosx})dx$=(-cosx-sinx)|${\;}_{0}^{π}$=-[(cosπ+sinπ)-(cos0+sin0)]=2,
故選:C

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某營(yíng)養(yǎng)師要為某個(gè)兒童預(yù)訂午餐和晚餐,已知一個(gè)單位的午餐含12個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和6個(gè)單位的維生素C;一個(gè)單位的晚餐含8個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和10個(gè)單位的維生素C.另外,該兒童這兩餐需要的營(yíng)養(yǎng)中至少含64個(gè)單位的碳水化合物,42個(gè)單位的蛋白質(zhì)和54個(gè)單位的維生素C.如果一個(gè)單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,分別用x,y表示為該兒童預(yù)訂的午餐和晚餐的單位數(shù).
(Ⅰ)用x,y列出滿足營(yíng)養(yǎng)要求的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問應(yīng)當(dāng)為該兒童分別預(yù)訂多少個(gè)單位的午餐和晚餐,才能滿足上述的營(yíng)養(yǎng)要求,并且花費(fèi)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)橢圓E的中心為原點(diǎn),它在x軸上的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)的連線互相垂直,且此焦點(diǎn)和長(zhǎng)軸的較近端點(diǎn)的距離等于$\sqrt{10}$-$\sqrt{5}$.
(1)求橢圓E的方程;
(2)已知雙曲線H的左、右焦點(diǎn)F1、F2與橢圓E的兩個(gè)焦點(diǎn)相同,E與H在第一象限交于點(diǎn)P且|PF1||PF2|=6,求雙曲線H的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)y=f(x)定義在實(shí)數(shù)集上,則函數(shù)y=f(x-m)與y=f(m-x)(m>0)的圖象關(guān)于直線x=m對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知△ABC中,AB=2,AC=4,O為△ABC的外心,則$\overrightarrow{AO}$•$\overrightarrow{BC}$等于( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{{\sqrt{6}}}{2}$,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=x2cos x的導(dǎo)數(shù)為( 。
A.y′=2xcos x-x2sinxB.y′=2xcos x+x2sin x
C.y′=x2cos x-2xsin xD.y′=xcos x-x2sin x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2.,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的$\sqrt{2}$倍.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)P(2,0),過橢圓C的左焦點(diǎn)F的直線l交C于A,B兩點(diǎn),若對(duì)滿足條件的任意直線l,不等式$\overrightarrow{PA}$?$\overrightarrow{PB}$≤λ(λ∈R)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,$tanB=\sqrt{3}$,AB=3,${S_{△ABC}}=\frac{{3\sqrt{3}}}{2}$,則AC的長(zhǎng)度為$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案