12.設(shè)函數(shù)f(x)=x3-3ax+b(a>0).
(Ⅰ)若曲線y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切,求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

分析 (Ⅰ)求導(dǎo)函數(shù),利用曲線y=f(x)在點(diǎn)(2,f(x))處在直線y=8相切,建立方程組,即可求得a,b的值;
(Ⅱ)f′(x)=3(x2-4)=3(x+2)(x-2),令f′(x)>0,可得函數(shù)的單調(diào)增區(qū)間;令f′(x)<0,可得函數(shù)的單調(diào)減區(qū)間.

解答 解:(Ⅰ)求導(dǎo)函數(shù),可得f′(x)=3x2-3a
∵曲線y=f(x)在點(diǎn)(2,f(x))處在直線y=8相切
∴$\left\{\begin{array}{l}{f′(2)=3(4-a)=0}\\{f(2)=8-6a+b=8}\end{array}\right.$,
∴a=4,b=24
(Ⅱ)f′(x)=3(x2-4)=3(x+2)(x-2)
令f′(x)>0,可得x<-2或x>2;
令f′(x)<0,可得-2<x<2
∴函數(shù)的單調(diào)增區(qū)間為(-∞,-2),(2,+∞),單調(diào)減區(qū)間為(-2,2).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,正確求導(dǎo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在△ABC中,∠BAC的平分線交BC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E,延長AC交△DCE的外接圓于點(diǎn)F,DF=$\sqrt{14}$
(Ⅰ)求BD;
(Ⅱ)若∠AEF=90°,AD=3,求DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x-1|+|x-a|,x∈R.
(1)求證:當(dāng)a=-2時(shí),不等式lnf(x)>1成立;
(2)關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-12x.
(1)求f′(1)的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,設(shè)銳角△ABC的外接圓ω的圓心為O,經(jīng)過A,O,C三點(diǎn)的圓ω1的圓心為K,且與邊AB和BC分別相交于點(diǎn)M和N,現(xiàn)知點(diǎn)L與K關(guān)于直線MN對(duì)稱,證明:BL⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,兩個(gè)以O(shè)為圓心的同心圓,AB切大圓于B,AC切小圓于C,交大圓于D,E,AB=12,AO=15,AD=8,求兩圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實(shí)數(shù)a滿足x+lgx=2,實(shí)數(shù)b滿足x+10x=2,函數(shù)f(x)=$\left\{{\begin{array}{l}{ln(x+1)+\frac{a+b}{2},x≤0}\\{{x^2}-2,x>0}\end{array}}$,則關(guān)于x的方程f(x)=x解的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知tanα=2,求
(1)$\frac{2sin(α-π)3cos(-α)}{4sin(\frac{π}{2}+α)-9cos(α-\frac{3π}{2})}$;
(2)4sin2α-3sinαcosα-5cos2α;
(3)$\frac{1+sin2α}{1+sin2α+cos2α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知sin(α-$\frac{π}{3}$)=$\frac{15}{17}$,α∈($\frac{π}{2}$,$\frac{5}{6}$π),則sinα的值為( 。
A.$\frac{8}{17}$B.$\frac{15\sqrt{3}+8}{34}$C.$\frac{15-8\sqrt{3}}{34}$D.$\frac{15+8\sqrt{3}}{34}$

查看答案和解析>>

同步練習(xí)冊(cè)答案