已知函數(shù)
(1)求的極值
(2)若上恒成立,求的取值范圍
(3)已知,求證:
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)的定義域是,其中常數(shù).
(1)若,求的過原點的切線方程.
(2)當(dāng)時,求最大實數(shù),使不等式對恒成立.
(3)證明當(dāng)時,對任何,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(1)求函數(shù)在區(qū)間上的最小值;
(2)設(shè),其中,判斷方程在區(qū)間 上的解的個數(shù)(其中為無理數(shù),約等于且有).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列是首項和公比均為的等比數(shù)列,設(shè).
(1)求證數(shù)列是等差數(shù)列;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù),若的圖象與圖象有且僅有兩個不同的公共點,則下列判斷正確的是
A.當(dāng)時, B. 當(dāng)時,
C. 當(dāng)時, D. 當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,判斷和的大小,并說明理由;
(3)求證:當(dāng)時,關(guān)于的方程:在區(qū)間上總有兩個不同的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知定義在上的函數(shù),對任意,都有成立,若函數(shù)的圖象關(guān)于點對稱,則 = ( )
(A)0 (B)2014 (C)3 (D)—2014
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com