【題目】已知{an}是各項為正數(shù)的等差數(shù)列,Sn為其前n項和,且4Sn=(an+1)2 . (Ⅰ)求a1 , a2的值及{an}的通項公式;
(Ⅱ)求數(shù)列 的最小值.
【答案】解:(Ⅰ)因為 ,
所以,當n=1時, ,解得a1=1,
當n=2時, ,解得a2=﹣1或a2=3,
因為{an}是各項為正數(shù)的等差數(shù)列,所以a2=3,
所以{an}的公差d=a2﹣a1=2,
所以{an}的通項公式an=a1+(n﹣1)d=2n﹣1.
(Ⅱ)因為 ,所以 ,
所以 = = ,
所以,當n=3或n=4時, 取得最小值
【解析】(Ⅰ)由于4Sn=(an+1)2.令n=1,可求得a1,再令n=2,即可求得a2的值,從而可得正項等差數(shù)列{an}的公差,繼而可求得其通項公式;(Ⅱ)由(Ⅰ)知an=2n﹣1,于是可求得其前n項和Sn=n2,故 = ,從而可求得數(shù)列 的最小值.
【考點精析】掌握等差數(shù)列的通項公式(及其變式)和數(shù)列的通項公式是解答本題的根本,需要知道通項公式:或;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】已知F為拋物線C:x2=2py(p>0)的焦點,過F的直線l與C交于A,B兩點,M為AB中點,點M到x軸的距離為d,|AB|=2d+1.
(1)求p的值;
(2)過A,B分別作C的兩條切線l1 , l2 , l1∩l2=N.請選擇x,y軸中的一條,比較M,N到該軸的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體ABCDEF中,底面ABCD為矩形,EF∥CD,CD⊥EA,CD=2EF=2,ED= .M為棱FC上一點,平面ADM與棱FB交于點N.
(Ⅰ)求證:ED⊥CD;
(Ⅱ)求證:AD∥MN;
(Ⅲ)若AD⊥ED,試問平面BCF是否可能與平面ADMN垂直?若能,求出 的值;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x2+ax﹣a)e1﹣x , 其中a∈R. (Ⅰ)求函數(shù)f'(x)的零點個數(shù);
(Ⅱ)證明:a≥0是函數(shù)f(x)存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊長分別是a、b、c,且 ,若將函數(shù)f(x)=2sin(2x+B)的圖象向右平移 個單位長度,得到函數(shù)g(x)的圖象,則g(x)的解析式為( )
A.
B.
C.2sin2x
D.2cos2x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x的圖象向左平移 個單位后,得到函數(shù)y=g(x)的圖象,下列關(guān)于y=g(x)的說法正確的是( )
A.圖象關(guān)于點(﹣ ,0)中心對稱
B.圖象關(guān)于x=﹣ 軸對稱
C.圖象關(guān)于點(﹣ ,0)中心對稱
D.圖象關(guān)于x=﹣ 軸對稱
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項為a1=2,且滿足a1+a2+…+an﹣an+1=﹣2.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足 ,求數(shù)列{anbn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+aex .
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)求f(x)的極值;
(3)當a=1時,曲線y=f(x)與直線y=kx﹣1沒有公共點,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com