分析 由已知求得a4,進(jìn)一步求出公比,然后分類代入等比數(shù)列的前n項(xiàng)和得答案.
解答 解:在等比數(shù)列{an}中,由a3•a5=16,得${{a}_{4}}^{2}=16$,
∴a4=±4,又a7=32,
∴${q}^{3}=\frac{{a}_{7}}{{a}_{4}}=±8$,則q=±2.
當(dāng)q=-2時(shí),由a7=32,得${a}_{1}=\frac{{a}_{7}}{{q}^{6}}=\frac{32}{(-2)^{6}}=\frac{1}{2}$,
當(dāng)q=2時(shí),由a7=32,得${a}_{1}=\frac{{a}_{7}}{{q}^{6}}=\frac{32}{{2}^{6}}=\frac{1}{2}$.
∴當(dāng)q=-2時(shí),${S}_{6}=\frac{\frac{1}{2}(1-(-2)^{5})}{1-(-2)}=\frac{11}{2}$;
當(dāng)q=2時(shí),${S}_{6}=\frac{\frac{1}{2}(1-{2}^{5})}{1-2}=\frac{31}{2}$.
故答案為:$\frac{11}{2}$或$\frac{31}{2}$.
點(diǎn)評(píng) 本題考查等比數(shù)列的性質(zhì),考查了等比數(shù)列的前n項(xiàng)和,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com