17.在△ABC中,已知a=1,b=2,C=60°,求c,B.

分析 由題意和余弦定理可得c值,再由勾股定理可得B值

解答 解:∵在△ABC中a=1,b=2,C=60°,
∴由余弦定理可得c2=12+22-2×1×2×cos60°=3,
∴c=$\sqrt{3}$,滿足a2+c2=b2,∴B=90°.

點(diǎn)評 本題考查余弦定理解三角形,涉及勾股定理,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,過橢圓C的左焦點(diǎn)F且傾斜角為60°的直線與圓x2+y2=$\frac{^{2}}{{a}^{2}}$相切.
(I)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相交于M,N兩點(diǎn)(M,N不是左、右頂點(diǎn)),若以MN為直徑的圓恰好過橢圓C的右頂點(diǎn)A,O為坐標(biāo)原點(diǎn),若點(diǎn)P滿足2$\overrightarrow{OP}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,求直線AP的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如果在四棱錐P-ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,G為AD邊的中點(diǎn),求證:BG⊥PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若cosα=$\frac{1}{5}$,且α是第四象限角,則cos(α+$\frac{5π}{2}$)=$\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若tanα+cotα=4,則sin2α=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知α,β為銳角,且cosα+cosβ-cos(α+β)=$\frac{3}{2}$,求α,β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.兩條平行直線3x+4y-2=0和3x+4y+3=0的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若奇函數(shù)y=g(x)與f(x)=2sin(2x+φ)圖象關(guān)于直線x=$\frac{π}{6}$對稱,要得到y(tǒng)=g(x),則可用y=f(x)的圖象變換得到(|φ|<$\frac{π}{2}$),需經(jīng)過的變換是( 。
A.向左平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC,M為CC1的中點(diǎn),∠ABC=90°,AC=A1A,∠A1AC=60°,AB=BC=2.
(Ⅰ)求證:BA1=BM;
(Ⅱ)求三棱錐C1-A1B1M的體積.

查看答案和解析>>

同步練習(xí)冊答案