(本題滿(mǎn)分12分)
如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(I)當(dāng)時(shí),求證平面
(II)當(dāng)二面角的大小為時(shí),求直線(xiàn)與平面所成角的正弦值.

(I)見(jiàn)解析(II)

解析試題分析:(Ⅰ)在平行四邊形中,
,,
易知,                                                       ……2分
平面,所以平面,∴
在直角三角形中,易得,
在直角三角形中,,,又,∴,
可得
.
,                                                       ……5分
又∵,∴平面.                              ……6分
(Ⅱ)由(Ⅰ)可知,,,
可知為二面角的平面角,
,此時(shí)的中點(diǎn).                                     ……8分
過(guò),連結(jié),則平面平面,
,則平面,連結(jié),
可得為直線(xiàn)與平面所成的角.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/58/8/15a3r.png" style="vertical-align:middle;" />,,
所以.                                        ……10分
中,,
直線(xiàn)與平面所成角的正弦值為.                         ……12分
解法二:依題意易知平面ACD.以A為坐標(biāo)原點(diǎn),AC、AD、SA分別為軸建立空間直角坐標(biāo)系,則易得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分10分)
如圖所示是一個(gè)半圓柱與三棱柱的組合體,其中,圓柱的軸截面是邊長(zhǎng)為4的正方形,為等腰直角三角形,.

試在給出的坐標(biāo)紙上畫(huà)出此組合體的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),且EF∥BC。設(shè)AE =,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-BF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,長(zhǎng)方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點(diǎn).

(1)求證:平面平面
(2)在底面A1D1上有一個(gè)靠近D1的四等分點(diǎn)H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)如圖,四棱錐P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,點(diǎn)E是PC的中點(diǎn),F(xiàn)在AD上且AF:FD=1:2.建立適當(dāng)坐標(biāo)系.

(1)求EF的長(zhǎng);
(2)證明:EF⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)如圖,在四面體中,,的中點(diǎn).

(1)求證:平面;
(2)設(shè)的重心,是線(xiàn)段上一點(diǎn),且.求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn)

(I)求證:平面BCD;
(II)求異面直線(xiàn)AB與CD所成角的余弦值;
(III)求點(diǎn)E到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
如圖,在直三棱柱(側(cè)棱垂直于底面的棱柱)中, , , , ,點(diǎn)的中點(diǎn).

(Ⅰ) 求證:∥平面;
(Ⅱ)求AC1與平面CC1B1B所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,

(1)求證:;
(2)求直線(xiàn)與平面所成角的正弦值;
(3)線(xiàn)段上是否存在點(diǎn),使// 平面?若存在,求出;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案