分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(1),f′(1),代入切線方程即可;
(Ⅱ)令g(x)=ax-(a+1)lnx-$\frac{1}{x}$-1,求出g(x)的導(dǎo)數(shù),根據(jù)a,x的范圍,判斷函數(shù)的單調(diào)性,求出g(x)的最大值,從而比較大小即可.
解答 解:(Ⅰ)a=1時(shí),f(x)=x-2lnx,
f′(x)=1-$\frac{2}{x}$,∴f′(1)=-1,
而f(1)=1,
故切線方程是:y-1=-(x-1),
即x+y-2=0;
(Ⅱ)令g(x)=ax-(a+1)lnx-$\frac{1}{x}$-1,
g′(x)=$\frac{{ax}^{2}-(a-1)x+1}{{x}^{2}}$,
∵a∈(0,1),x∈[1,e],
∴ax2>0,a-1<0,(a-1)x<0,
∴ax2-(a-1)x+1>0,
∴g′(x)>0,
g(x)在[1,e]遞增,
∴g(x)max=g(e)=a(e-1)-2-$\frac{1}{e}$<e-3-$\frac{1}{e}$<0,
∴a∈(0,1),x∈[1,e]時(shí),f(x)<$\frac{1}{x}$+1.
點(diǎn)評(píng) 本題考查了曲線的切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題
下列四個(gè)命題:①一個(gè)命題的逆命題為真,則它的逆否命題一定為真;②命題“設(shè),若,則或”是一個(gè)假命題;③“”是“”的充分不必要條件;④一個(gè)命題的否命題為真,則它的逆命題一定為真.其中不正確的命題是 .(寫出所有不正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$-1 | C. | $\frac{\sqrt{2}-1}{2}$ | D. | $\frac{2-\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com