【題目】已知直線的極坐標方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)若過且與直線垂直的直線與曲線相交于、兩點,求.
【答案】(1),;(2)
【解析】
(1)根據(jù)極坐標與直角坐標方程的轉(zhuǎn)化,參數(shù)方程與普通方程的轉(zhuǎn)化即可得直線的直角坐標方程和曲線的普通方程;
(2)根據(jù)直線與直線垂直且過,可得直線的參數(shù)方程.將直線的參數(shù)方程與曲線聯(lián)立,結(jié)合韋達定理及參數(shù)方程的幾何意義即可求得.
(1)由直線極坐標方程為,即,
根據(jù)極坐標與直角坐標的互化公式,可得直線直角坐標方程:,
由曲線的參數(shù)方程為(為參數(shù)),則,
整理得橢圓的普通方程為.
(2)由已知直線與垂直,所以直線的傾斜角為,
直線的參數(shù)方程為,即(為參數(shù)),
把直線的參數(shù)方程代入
化簡得
設,是上述方程的兩個實根,則有
又直線過點
故由上式及的幾何意義得
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓與直線有且只有一個交點,點P為橢圓C上任一點,,.若的最小值為.
(1)求橢圓C的標準方程;
(2)設直線與橢圓C交于不同兩點A,B,點O為坐標原點,且,當的面積S最大時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷量(萬臺) | 8 | 10 | 13 | 25 | 24 |
某機構(gòu)調(diào)查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分數(shù)據(jù)如下表所示:
購置傳統(tǒng)燃油車 | 購置新能源車 | 總計 | |
男性車主 | 6 | 24 | |
女性車主 | 2 | ||
總計 | 30 |
(1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷與是否線性相關(guān);
(2)請將上述列聯(lián)表補充完整,并判斷是否有的把握認為購車車主是否購置新能源乘用車與性別有關(guān);
(3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區(qū)購置新能源乘用車的車主性別比例,從該地區(qū)購置新能源乘用車的車主中隨機選取50人,記選到女性車主的人數(shù)為X,求X的數(shù)學期望與方差.
參考公式:,,其中.,若,則可判斷與線性相關(guān).
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)的圖像是一條連續(xù)不斷的曲線,且在任意區(qū)間上都不是常值函數(shù).設,其中分點將區(qū)間任意劃分成個小區(qū)間,記,稱為關(guān)于區(qū)間的階劃分“落差總和”.
當取得最大值且取得最小值時,稱存在“最佳劃分”.
(1)已知,求的最大值;
(2)已知,求證:在上存在“最佳劃分”的充要條件是在上單調(diào)遞增.
(3)若是偶函數(shù)且存在“最佳劃分”,求證:是偶數(shù),且.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點P到直線的距離與到點的距離之比為.
(1)求動點P的軌跡;
(2)直線與曲線交于不同的兩點A,B(A,B在軸的上方):
①當A為橢圓與軸的正半軸的交點時,求直線的方程;
②對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“公平正義”是社會主義和諧社會的重要特征,是社會主義法治理念的價值追求.“考試”作為一種公平公正選拔人才的有效途徑,正被廣泛采用.每次考試過后,考生最關(guān)心的問題是:自己的考試名次是多少?自已能否被錄取?能獲得什么樣的職位?
某單位準備通過考試(按照高分優(yōu)先錄取的原則)錄用名,其中個高薪職位和個普薪職位.實際報名人數(shù)為名,考試滿分為分. 考試后對部分考生考試成績進行抽樣分析,得到頻率分布直方圖如下:
試結(jié)合此頻率分布直方圖估計:
(1)此次考試的中位數(shù)是多少分(保留為整數(shù))?
(2)若考生甲的成績?yōu)?/span>280分,能否被錄取?若能被錄取,能否獲得高薪職位?(分數(shù)精確到個位,概率精確到千分位)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com