【題目】【2016高考山東理數(shù)】已知.
(I)討論的單調(diào)性;
(II)當時,證明對于任意的成立.
【答案】(Ⅰ)見解析;(Ⅱ)見解析
【解析】
試題分析:(Ⅰ)求的導函數(shù),對a進行分類討論,求的單調(diào)性;
(Ⅱ)要證對于任意的成立,即證,根據(jù)單調(diào)性求解.
試題解析:
(Ⅰ)的定義域為;
.
當, 時,,單調(diào)遞增;
,單調(diào)遞減.
當時,.
(1),,
當或時,,單調(diào)遞增;
當時,,單調(diào)遞減;
(2)時,,在內(nèi),,單調(diào)遞增;
(3)時,,
當或時,,單調(diào)遞增;
當時,,單調(diào)遞減.
綜上所述,
當時,函數(shù)在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減;
當時,在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在 內(nèi)單調(diào)遞增;
當時,在內(nèi)單調(diào)遞增;
當,在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.
(Ⅱ)由(Ⅰ)知,時,
,,
令,.
則,
由可得,當且僅當時取得等號.
又,
設(shè),則在單調(diào)遞減,
因為,
所以在上存在使得 時,時,,
所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞減,
由于,因此,當且僅當取得等號,
所以,
即對于任意的恒成立。
科目:高中數(shù)學 來源: 題型:
【題目】近年來,我國電子商務蓬勃發(fā)展. 2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達516億元人民幣,與此同時,相關(guān)管理部門推出了針對該網(wǎng)購平臺的商品和服務的評價系統(tǒng). 從該評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務都滿意的交易為80次.
(Ⅰ) 根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有99%的把握認為“網(wǎng)購者對商品滿意與對服務滿意之間有關(guān)系”?
對服務滿意 | 對服務不滿意 | 合計 | |
對商品滿意 | 80 | ||
對商品不滿意 | |||
合計 | 200 |
(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設(shè)對商品和服務都滿意的次數(shù)為隨機變量,求的分布列和數(shù)學期望.
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的導函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)在區(qū)間內(nèi)單調(diào)遞增;②函數(shù)在區(qū)間內(nèi)單調(diào)遞減;③函數(shù)在區(qū)間內(nèi)單調(diào)遞增;④當時,函數(shù)有極小值;⑤當時,函數(shù)有極大值.則上述判斷中正確的是( )
A. ①② B. ③
C. ②③ D. ③④⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在△ABC中,已知點D在BC邊上,滿足AD⊥AC,cos ∠BAC=-,AB=3,BD=.
(1)求AD的長;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)首項為1的正項數(shù)列{an}的前n項和為Sn,且Sn+1-3Sn=1.
(1) 求證:數(shù)列{an}為等比數(shù)列;
(2) 數(shù)列{an}是否存在一項ak,使得ak恰好可以表示為該數(shù)列中連續(xù)r(r∈N*,r≥2)項的和?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,根據(jù)下列條件解三角形,其中有兩個解的是( )
A. b="10," A=450, C=600 B. a=6, c=5, B=600
C. a=7, b=5, A=600 D. a=14, b="16," A=450
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌馬獲勝的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com