分析 an+1=an+n-1,可得當(dāng)n≥2時(shí),an-an-1=n-2.利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出.
解答 解:∵an+1=an+n-1,
∴當(dāng)n≥2時(shí),an-an-1=n-2.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(n-2)+(n-3)+…+1+0+1
=$\frac{(n-1)(n-2)}{2}$+1,
=$\frac{1}{2}({n}^{2}-3n+4)$,
∴a6=$\frac{1}{2}×({6}^{2}-3×6+4)$=11.
故答案為:11.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系的應(yīng)用、“累加求和”,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 高一(3)班的好學(xué)生 | B. | 江西省所有的老人 | ||
C. | 不等于0的實(shí)數(shù) | D. | 我國著名的數(shù)學(xué)家 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù) | |
B. | 當(dāng)x∈[$\frac{π}{6}$,$\frac{2}{3}$π]時(shí),函數(shù)g(x)的值域是[-2,1] | |
C. | 函數(shù)g(x)是奇函數(shù) | |
D. | 其圖象關(guān)于直線x=-$\frac{π}{4}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f (x) 的圖象的一個(gè)對稱中心為($\frac{π}{6}$,0) | |
B. | f (x) 的圖象的兩個(gè)相鄰對稱軸之間距離為$\frac{π}{2}$ | |
C. | f (x) 在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上是增函數(shù) | |
D. | f(-$\frac{π}{6}$+x)=f($\frac{π}{6}$+x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com