設(shè)二次函數(shù)f(x)=ax2+bx(a≠0)滿足條件:①f(x)=f(-x-2);②函數(shù)f(x)的圖象與直線y=x相切.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若不等式πf(x)>(
1
π
2-tx在|t|≤2時(shí)恒成立,求實(shí)數(shù)x的取值范圍.
考點(diǎn):函數(shù)恒成立問題,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)f(x)=f(-x-2)⇒y=f(x)的圖象的對(duì)稱軸方程是x=-1,于是有b=2a,依題意,方程組
y=ax2+bx
y=x
有且只有一解,利用△=0即可求得b與a,從而得函數(shù)f(x)的解析式;
(Ⅱ)利用指數(shù)函數(shù)的單調(diào)性質(zhì),知f(x)>tx-2在|t|≤2時(shí)恒成立,構(gòu)造函數(shù)g(t)=xt-(
1
2
x2+x-2),由
g(-2)<0
g(2)<0
即可求得答案.
解答: 解:(Ⅰ)由①可知,二次函數(shù)f(x)=ax2+bx(a≠0)圖象對(duì)稱軸方程是x=-1,∴b=2a;
又因?yàn)楹瘮?shù)f(x)的圖象與直線y=x相切,所以方程組
y=ax2+bx
y=x
有且只有一解,即方程ax2+(b-1)x=0有兩個(gè)相等的實(shí)根,
∴b=1,a=
1
2
,
所以,函數(shù)f(x)的解析式是f(x)=
1
2
x2+x.
(Ⅱ)∵π>1,∴πf(x)>(
1
π
2-tx等價(jià)于等價(jià)于f(x)>tx-2,
即不等式
1
2
x2+x>tx-2在|t|≤2時(shí)恒成立,…(6分)
問題等價(jià)于一次函數(shù)g(t)=xt-(
1
2
x2+x-2)在|t|≤2時(shí)恒成立,
g(-2)<0
g(2)<0
,即
x2-2x+4>0
x2+6x+4>0

解得:x<-3-
5
或x>-3+
5
,
故所求實(shí)數(shù)x的取值范圍是(-∞,-3-
5
)∪(-3+
5
,+∞).
點(diǎn)評(píng):本題考查函數(shù)恒成立問題,著重考查二次函數(shù)的性質(zhì),突出考查等價(jià)轉(zhuǎn)化思想、構(gòu)造函數(shù)思想與方程思想,考查運(yùn)算求解能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各組向量中,可以作為基底的是(  )
A、
e1
=(0,0)
e2
=(1,3)
B、
e1
=(3,5),
e2
=(-6,-10)
C、
e1
=(-1,2),
e2
=(-2,1)
D、
e1
=(-1,2),
e2
=(-
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a,b和平面α,β,γ,試判斷下列說法是否正確,并說明理由:
(1)若a∥α,a∥b,b?α,則b∥α;
(2)若a∥β,β∥γ,則a∥γ;
(3)若a⊥α,b⊥a,b?α,則b∥α;
(4)若a⊥γ,β∥γ,則a⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a2=4,an+1+2an-1=3an(n≥2)
(Ⅰ)證明:數(shù)列{an+1-an}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=an-1,Sn=
a1
b1b2
+
a2
b2b3
+…+
an
bnbn+1
,求使Sn
1
6
(m2-3m)對(duì)所有的n∈N*都成立的最大正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
ax3+
1
2
bx2+(1-2a)x,a,b∈R,a≠0,
(Ⅰ)若曲線y=f(x)與x軸相切于異于原點(diǎn)的一點(diǎn),且函數(shù)f(x)的極小值為-
4
3
a,求a,b的值;
(Ⅱ)若x0>0,且
a
x0+2
+
b
x0+1
+
1-2a
x0
=0,
    ①求證:af′(
x0
x0+1
)<0; 
    ②求證:f(x)在(0,1)上存在極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是半徑為1的圓上一動(dòng)點(diǎn),若該圓的弦AB=
3
,則
AP
AB
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=2012,若f(1)=2,則f(99)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(Ⅰ)若當(dāng)g(x)≤5時(shí),恒有f(x)≤6,求a的最大值;
(Ⅱ)若當(dāng)x∈R時(shí),恒有f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人投擲飛鏢,他們的成績(環(huán)數(shù))如圖頻數(shù)條形統(tǒng)計(jì)圖所示.則甲、乙、丙三人訓(xùn)練成績方差s2,s2,s2的大小關(guān)系是(  )
A、s2<s2<s2
B、s2<s2<s2
C、s2<s2<s2
D、s2<s2<s2

查看答案和解析>>

同步練習(xí)冊(cè)答案