(2012•杭州二模)已知M(x0,y0)為拋物線x2=8y上的動(dòng)點(diǎn),點(diǎn)N的坐標(biāo)為(
21
,0),則y0+|
MN
|
的最小值是
3
3
分析:先確定拋物線的焦點(diǎn)坐標(biāo)與準(zhǔn)線方程,再利用|MF|+|MN|≥|NF|,當(dāng)且僅當(dāng)三點(diǎn)F、M、N共線時(shí),取得最小值為5,即可求出y0+|
MN
|
的最小值.
解答:解:拋物線x2=8y上的焦點(diǎn)坐標(biāo)為(0,2),準(zhǔn)線方程為y=-2
∵M(jìn)(x0,y0)為拋物線x2=8y上的動(dòng)點(diǎn)
∴|MF|=y0+2
∵|MF|+|MN|≥|NF|,當(dāng)且僅當(dāng)三點(diǎn)F、M、N共線時(shí),取得最小值為5
∴y0+2+|MN|的最小值為5
∴y0+|MN|的最小值為3
y0+|
MN
|
的最小值是3
故答案為:3
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查拋物線的定義,解題的關(guān)鍵是利用|MF|+|MN|≥|NF|,當(dāng)且僅當(dāng)三點(diǎn)F、M、N共線時(shí),取得最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)如圖,在矩形ABCD中,AB=2BC,點(diǎn)M在邊DC上,點(diǎn)F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點(diǎn)D位于D′位置,連接D′B,D′C得四棱錐D′-ABCM.
(Ⅰ)求證:AM⊥D′F;
(Ⅱ)若∠D′EF=
π
3
,直線D'F與平面ABCM所成角的大小為
π
3
,求直線AD′與平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),對(duì)任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一個(gè)解,且x0∈(a,a+1)(a∈N*),則a=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)雙曲線
x2
a2
-
y2
b2
=1(a>0, b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,漸近線分別為l1,l2,點(diǎn)P在第一 象限內(nèi)且在l1上,若l2⊥PF1,l2∥PF2,則雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)已知正三棱柱ABC-A′B′C′的正視圖和側(cè)視圖如圖所示.設(shè)△ABC,△A′B′C′的中心分別是O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn),在旋轉(zhuǎn)過程中對(duì)應(yīng)的俯視圖的面積為S,則S的最大值為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)若全集U={1,2,3,4,5},CUP={4,5},則集合P可以是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案