已知|
a
|=1,|
b
|=
2
,且
a
⊥(
a
-
b
),則向量
a
與向量
b
的夾角是
 
考點:數(shù)量積表示兩個向量的夾角
專題:平面向量及應(yīng)用
分析:由條件利用兩個向量垂直的性質(zhì)、兩個向量的數(shù)量積的定義求得cosθ的值,可得向量
a
與向量
b
的夾角θ的值.
解答: 解:設(shè)向量
a
與向量
b
的夾角是θ,則由題意可得
a
•(
a
-
b
)=
a
2
-
a
b
=1-1×
2
×cosθ=0,
求得cosθ=
2
2
,可得θ=
π
4
,
故答案為:
π
4
點評:本題主要考查兩個向量的數(shù)量積的定義,兩個向量垂直的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)點M(x,y)到定點F(5,0)的距離和它到定直線l:x=
16
5
的距離的比是常數(shù)
5
4
,求點M的軌跡.
(2)已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上,求圓心為C的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x+2)4展開式中含x項的系數(shù)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)極值的說法正確的有
 

①函數(shù)的極大值一定大于它的極小值;
②導(dǎo)數(shù)為零的點不一定是函數(shù)的極值點;
③若f(x)在區(qū)間(a,b)內(nèi)有極值點,那么f(x)在區(qū)間(a,b)上一定不單調(diào);
④f(x)在區(qū)間[a,b]上的最大值,一定是f(x)在區(qū)間(a,b)上的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列三角形數(shù)表:第六行的最大的數(shù)字是
 
; 設(shè)第n行的第二個數(shù)為an(n≥2,n∈N*)的通項公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2+px+q>0的解集是{x|x>
7
2
或x<-
1
2
},則
p
q
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機變量ξ服從正態(tài)分布N(2,σ2),P(ξ≥4)=0.4,則P(ξ≤0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,a4+a5+a6+a7=26,a4a7=40,則d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則f2013(x)=(  )
A、cosxB、-sinx
C、-cosxD、sinx

查看答案和解析>>

同步練習(xí)冊答案