【題目】已知冪函數(shù)y= (m∈Z)的圖象與x軸,y軸沒有交點,且關(guān)于y軸對稱,則m=( )
A.1
B.0,2
C.﹣1,1,3
D.0,1,2
【答案】C
【解析】解:∵冪函數(shù)y= (m∈Z)的圖象與x軸,y軸沒有交點,且關(guān)于y軸對稱,
∴m2﹣2m﹣3≤0且m2﹣2m﹣3為偶數(shù)(m∈Z),
由m2﹣2m﹣3≤0得:﹣1≤m≤3,又m∈Z,
∴m=﹣1,0,1,2,3.
當m=﹣1時,m2﹣2m﹣3=1+2﹣3=0,為偶數(shù),符合題意;
當m=0時,m2﹣2m﹣3=﹣3,為奇數(shù),不符合題意;
當m=1時,m2﹣2m﹣3=1﹣2﹣3=﹣4,為偶數(shù),符合題意;
當m=2時,m2﹣2m﹣3=4﹣4﹣3=﹣3,為奇數(shù),不符合題意;
當m=3時,m2﹣2m﹣3=9﹣6﹣3=0,為偶數(shù),符合題意.
綜上所述,m=﹣1,1,3.
故選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x (單位:尾/立方米)的函數(shù).當x不超過4尾/立方米時,v的值為2千克/年;當4<x≤20時,v是x的一次函數(shù),當x達到20尾/立方米時,因缺氧等原因,v的值為0千克/年.
(1)當0<x≤20時,求v關(guān)于x的函數(shù)表達式;
(2)當養(yǎng)殖密度x為多大時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校實行自主招生,參加自主招生的學(xué)生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試.已知甲、乙兩人參加初試,在這8個試題中甲能答對6個,乙能答對每個試題的概率為,且甲、乙兩人是否答對每個試題互不影響.
(Ⅰ)求甲通過自主招生初試的概率;
(Ⅱ)試通過概率計算,分析甲、乙兩人誰通過自主招生初試的可能性更大;
(Ⅲ)記甲答對試題的個數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為
(1)求及基地的預(yù)期收益;
(2)若該基地額外聘請工人,可在周一當天完成全部采摘任務(wù),若周一無雨時收益為萬元,有雨時收益為萬元,且額外聘請工人的成本為元,問該基地是否應(yīng)該額外聘請工人,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),
(1)求實數(shù)a的值;
(2)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x﹣b)+f(﹣2x+1)=0有實數(shù)根,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點.
(Ⅰ)證明: ;
(Ⅱ)若為上的動點, 與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: ,點P,過右焦點F作與y軸不垂直的直線l交橢圓C于A,B兩點.
(Ⅰ )求橢圓C的離心率;
(Ⅱ )求證:以坐標原點O為圓心與PA相切的圓,必與直線PB相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= 則不等式f(x)>f(1)的解集是( )
A.(﹣3,1)∪(3,+∞)
B.(﹣3,1)∪(2,+∞)
C.(﹣1,1)∪(3,+∞)
D.(﹣∞,﹣3)∪(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當x>0時,f(x)=﹣x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com