【題目】已知(),,其中為自然對數(shù)的底數(shù).
(1)若恒成立,求實(shí)數(shù)的取值范圍;
(2)若在(1)的條件下,當(dāng)取最大值時(shí),求證: .
【答案】(1); (2)見解析.
【解析】試題分析:(1)恒成立問題的兩種處理方法:法一:分類討論:求導(dǎo)利用函數(shù)的單調(diào)性求解即可;法二:分離參數(shù). 恒成立在上恒成立,令求函數(shù)最值即可.
(2)要證 ,先證明: 時(shí), ,只需要證明. 令求導(dǎo)利用單調(diào)性即可證得.
試題解析:
(1)解:法一:分類討論.因?yàn)?/span>,
①當(dāng)時(shí), 所以,
故在上單調(diào)遞增,
所以,所以
②當(dāng)時(shí),令,
若, ;若, ,
所以在上單減,在上單增;
所以,
解得,此時(shí)無解,
綜上可得.
法二:分離參數(shù). 恒成立在上恒成立.
令,則
所以在上單增,
故,所以
(2)證明:由題意可知, .
要證 (*)
先證明: 時(shí), .
令.
當(dāng)時(shí), ,所以在上單減,
所以,所以.
所以要證明(*)式成立,只需要證明(**) ……(8分)
令,則,
,令
又在上單調(diào)遞增,則在上, ,
在, .
所以, 在上單減,在上單增,
所以,
所以在上單調(diào)遞增,所以.
所以(**)成立,也即是(*)式成立.故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a滿足x+lgx=4,b滿足x+10x=4,函數(shù)f(x)= ,則關(guān)于x的方程f(x)=x的解的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式 ;
(3)若f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在內(nèi)的產(chǎn)品為合格品,否則為不合格品,統(tǒng)計(jì)結(jié)果如表:
(Ⅰ)求甲流水線樣本合格的頻率;
(Ⅱ)從乙流水線上重量值落在內(nèi)的產(chǎn)品中任取2個(gè)產(chǎn)品,求這2件產(chǎn)品中恰好只有一件合格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,,分別是角A,B,C的對邊,且.
(1)求角的值;
(2)已知函數(shù),將的圖像向左平移個(gè)單位長度后得到函數(shù)的圖像,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線在直角坐標(biāo)系中的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線的方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)點(diǎn),若直線與曲線交于兩點(diǎn),求使為定值的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),與的公共弦的長為.
(1)求的方程;
(2)過點(diǎn)的直線與相交于,兩點(diǎn),與相交于,兩點(diǎn),且與同向
(ⅰ)若,求直線的斜率
(ⅱ)設(shè)在點(diǎn)處的切線與軸的交點(diǎn)為,證明:直線繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com