【題目】某公司為了預測下月產(chǎn)品銷售情況,找出了近7個月的產(chǎn)品銷售量(單位:萬件)的統(tǒng)計表:

月份代碼

1

2

3

4

5

6

7

銷售量(萬件)

但其中數(shù)據(jù)污損不清,經(jīng)查證,,.

(1)請用相關系數(shù)說明銷售量與月份代碼有很強的線性相關關系;

(2)求關于的回歸方程(系數(shù)精確到0.01);

(3)公司經(jīng)營期間的廣告宣傳費(單位:萬元)(),每件產(chǎn)品的銷售價為10元,預測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費)

參考公式及數(shù)據(jù):,相關系數(shù),當時認為兩個變量有很強的線性相關關系,回歸方程中斜率和截距的最小二乘估計公式分別為.

【答案】(1)見解析;(2) (3)見解析

【解析】

(1)根據(jù)中條件,計算相關系數(shù)的值,即可得出結論;

(2)根據(jù)題中數(shù)據(jù),計算出,即可得到回歸方程;

3)將代入(2)的結果,結合題中條件,即可求出結果.

(1)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得

, ,

, 因為

所以銷售量與月份代碼有很強的線性相關關系.

(2) 由及(Ⅰ)得

所以關于的回歸方程為

(3)當時,代入回歸方程得(萬件)

第8個月的毛利潤為

,預測第8個月的毛利潤不能突破萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個工廠在某年里連續(xù)10個月每月產(chǎn)品的總成本(萬元)與該月產(chǎn)量(萬件)之間有如下一組數(shù)據(jù):

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合的關系,請用相關系數(shù)加以說明;

2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產(chǎn)量為1.98萬件時,產(chǎn)品的總成本為多少萬元?(均精確到0.001

附注:①參考數(shù)據(jù):,,.

②參考公式:相關系數(shù),,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信運動已成為當下熱門的運動方式,小王的微信朋友內也有大量好友參與了微信運動,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

性別

步數(shù)

02000

20015000

50018000

800110000

10000

1

2

3

6

8

0

2

10

6

2

1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為積極型,否則為懈怠型,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為評定類型性別有關?

積極型

懈怠型

總計

總計

2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有X人,超過10000步的有Y人,設ξ|XY|,求E的分布列及數(shù)學期望.

附:K2,na+b+c+d

PK2k0

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)設,

①當時,求曲線在點處的切線方程;

②當時,求證:對任意恒成立.

2)討論的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,過作垂直于軸的直線交該橢圓于,兩點,直線的斜率為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若的外接圓在處的切線與橢圓交另一點于,且的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱的側棱垂直于底面, ,點分別是的中點.

(1)證明:平面;

(2)設,當為何值時,平面,試證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,的中點,.

1)求證:平面;

2)點在線段上,,試確定的值,使平面;

3)若平面,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某氣象站統(tǒng)計了4月份甲、乙兩地的天氣溫度(單位),統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示,

1)根據(jù)所給莖葉圖利用平均值和方差的知識分析甲,乙兩地氣溫的穩(wěn)定性;

2)氣象主管部門要從甲、乙兩地各隨機抽取一天的天氣溫度,若甲、乙兩地的溫度之和大于或等于,則被稱為甲、乙兩地往來溫度適宜天氣,求甲、乙兩地往來溫度適宜天氣的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點是坐標原點的拋物線的焦點軸正半軸上,圓心在直線上的圓軸相切,且關于點對稱.

(1)求的標準方程;

(2)過點的直線交于,與交于,求證:

查看答案和解析>>

同步練習冊答案