已知橢圓
x2
25
+
y2
16
=1
上的點P到橢圓一個焦點的距離為7,則P到另一焦點的距離為( 。
A、2B、3C、5D、7
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓方程找出a的值,根據(jù)橢圓的定義可知橢圓上的點到兩焦點的距離之和為常數(shù)2a,把a的值代入即可求出常數(shù)的值得到P到兩焦點的距離之和,由P到一個焦點的距離為7,求出P到另一焦點的距離即可.
解答: 解:由橢圓
x2
25
+
y2
16
=1
,得a=5,
則2a=10,且點P到橢圓一焦點的距離為7,
由定義得點P到另一焦點的距離為2a-3=10-7=3.
故選B
點評:此題考查學生掌握橢圓的定義及簡單的性質(zhì),是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知sin(x-
π
6
)=-
3
3
,則sinx=
 
,sin(x-
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,n∈N*,若
an+2-an+1
an+1-an
=k(k為常數(shù)),則稱{an}為“等差比數(shù)列”,下列是對“等差比數(shù)列”的判斷:
①k不可能為0;
②等差數(shù)列一定是“等差比數(shù)列”;
③等比數(shù)列一定是“等差比數(shù)列”;
④“等差比數(shù)列”中可以有無數(shù)項為0.
其中正確判斷命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長為3的一條直繩上任意剪兩剪刀,得到三條線段,其中有兩條長度大于1的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高二年級準備從甲、乙兩名數(shù)學優(yōu)秀的學生中選出1人參加全國數(shù)學聯(lián)賽,為了研究甲、乙誰更優(yōu)秀,統(tǒng)計了他倆在高中考試的13次數(shù)學成績,用莖葉圖統(tǒng)計如圖,請用所學統(tǒng)計知識研究,應該選哪一個人參加聯(lián)賽?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
y≥x
x+2y≤2
x≥-2
,則z=x-3y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

,  
的夾角為θ,若||
a
|-|
b
||=|
a
+
b
|,則( 。
A、cosθ=-1
B、cosθ=1
C、-1<cosθ<0
D、0<cosθ<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a=20.5,b=logπ3,c=ln
1
3
,則( 。
A、b>c>a
B、b>a>c
C、a>b>c
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
3x+1
的定義域為
 

查看答案和解析>>

同步練習冊答案