【題目】(導(dǎo)學(xué)號(hào):05856301)已知函數(shù)f(x)=m(x-1)exx2(m∈R),其導(dǎo)函數(shù)為f′(x),若對(duì)任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實(shí)數(shù)m的取值范圍為(  )

A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)

【答案】C

【解析】由題意得f(x)mexm(x1)exxmxexx,

所以x2(m1)x>f(x)對(duì)任意的x<0恒成立等價(jià)于mxexx<x2(m1)x對(duì)任意的x<0恒成立,

mexxm>0對(duì)任意的x<0恒成立.

g(x)mexxm(x<0),g(x)mex1,

當(dāng)m1時(shí),g(x)mex1ex1<0g(x)(,0)上單調(diào)遞減所以g(x)>g(0)0,符合題意;

當(dāng)m>1時(shí),g(x)(,-ln m)上單調(diào)遞減(ln m,0)上單調(diào)遞增,所以g(x)ming(ln m)<g(0)0,不合題意.

所以實(shí)數(shù)m的取值范圍為(,1]

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中的假命題是(  )

A. αβR,使sin(αβ)sinαsinβ

B. φR,函數(shù)f(x)sin(2xφ)都不是偶函數(shù)

C. x0R,使 (ab,cR且為常數(shù))

D. a>0,函數(shù)f(x)ln2xlnxa有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求證:直線AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一兒童游樂(lè)場(chǎng)擬建造一個(gè)“蛋筒”型游樂(lè)設(shè)施,其軸截面如圖中實(shí)線所示. 是等腰梯形, 米, 的延長(zhǎng)線上, 為銳角). 圓都相切,且其半徑長(zhǎng)為米. 是垂直于的一個(gè)立柱,則當(dāng)的值設(shè)計(jì)為多少時(shí),立柱最矮?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某廣場(chǎng)中間有一塊邊長(zhǎng)為2百米的菱形狀綠化區(qū),其中是半徑為1百米的扇形, 管理部門(mén)欲在該地從修建小路:在弧上選一點(diǎn)(異于兩點(diǎn)),過(guò)點(diǎn)修建與平行的小路.問(wèn):點(diǎn)選擇在何處時(shí),才能使得修建的小路的總長(zhǎng)最?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856310)

已知函數(shù)f(x)=x+ln x(a∈R).

(Ⅰ)當(dāng)a=2時(shí), 求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若關(guān)于x的函數(shù)g(x)=f(x)+ln x+2e(e為自然對(duì)數(shù)的底數(shù))有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856323)已知在△ABC中,A,BC所對(duì)的邊分別為a,bc,R為△ABC外接圓的半徑,若a=1, sin2Bsin2C-sin2A=sin Asin Bsin C,則R的值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)是指企業(yè)的校園,地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車(chē)單車(chē)共享服務(wù),是一種分時(shí)租賃模式,某共享單車(chē)企業(yè)為更好服務(wù)社會(huì),隨機(jī)調(diào)查了100人,統(tǒng)計(jì)了這100人每日平均騎行共享單車(chē)的時(shí)間(單位:分鐘),由統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時(shí)間在三組對(duì)應(yīng)的人數(shù)依次成等差數(shù)列

(1)求頻率分布直方圖中的值.

(2)若將日平均騎行時(shí)間不少于80分鐘的用戶(hù)定義為“忠實(shí)用戶(hù)”,將日平均騎行時(shí)間少于40分鐘的用戶(hù)為“潛力用戶(hù)”,現(xiàn)從上述“忠實(shí)用戶(hù)”與“潛力用戶(hù)”的人中按分層抽樣選出5人,再?gòu)倪@5人中任取3人,求恰好1人為“忠實(shí)用戶(hù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極大值,則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案