10.二次函數(shù)y=-x2-mx-1與x軸兩交點(diǎn)分別為A(x1,0),B(x2,0),且x1<x2<3,求m的取值范圍.

分析 利用x1<x2<3,建立不等式,即可求m的取值范圍.

解答 解:設(shè)函數(shù)f(x)=-x2-mx-1,則
∵函數(shù)的兩根x1<x2<3,∴有$\left\{\begin{array}{l}{-\frac{m}{2}<3}\\{f(3)=-10-3m<0}\\{△={m}^{2}-4>0}\end{array}\right.$,
解得m的取值范圍為-$\frac{10}{3}$<m<-2或m>2.

點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì),考查函數(shù)的零點(diǎn),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知集合A={x|kπ+$\frac{π}{3}$≤x≤kπ+$\frac{π}{2}$,k∈z},B={x|4-x2≥0},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知△ABC中,AB=$\sqrt{3}$,AC=2,$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,則$\overrightarrow{AO}$•$\overrightarrow{BC}$=( 。
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列命題中:
①命題“若x2-5x+6=0,則x=2或x=3”的逆否命題為“若x≠2或x≠3,則x2-5x+6≠0”.
②命題p:“存在x0∈R,使得log2x0≤0”的否定是“任意x∈R,使得log2x>0”;
③回歸直線方程一定過(guò)樣本中心點(diǎn)($\overline{x}$,$\overline{y}$).
其中真命題的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=emx-mx2
(1)當(dāng)m=2時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線L1的方程;
(2)當(dāng)m>0時(shí),要使f(x)≥1對(duì)一切實(shí)數(shù)x≥0恒成立,求實(shí)數(shù)m的取值范圍;
(3)求證:$\sum_{i=1}^n{{e^{-i(i+1)}}}<\frac{1}{{\sqrt{e}}}+\frac{1}{3}-\frac{1}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-3,2).
(1)求$|{\overrightarrow a-\overrightarrow b}|$;
(2)k為何值時(shí),k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$互相垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一個(gè)袋子中有號(hào)碼為1,2,3,4大小相同的4個(gè)小球,現(xiàn)從中任意取出一個(gè)球,取出后再放回,然后再?gòu)?br />袋中任取一個(gè)球,則取得兩個(gè)號(hào)碼之和為5的概率為( 。
A.$\frac{7}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.過(guò)點(diǎn)$M({1,2\sqrt{2}})$作直線交拋物線x2=2py(p>0)于A、B且M為A、B中點(diǎn),過(guò)A、B分別作拋物線切線,兩切線交于點(diǎn)N,若N在直線y=-2p上,則p=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=sinx+sin(x+\frac{π}{2}),x∈R$
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相應(yīng)x的取值集合;
(3)若f(α)=$\frac{3}{4}$,求sin2α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案