若拋物線y2=4x的焦點是F準(zhǔn)線是l,則過點F和點M(4,4)且與準(zhǔn)線l相切的圓有( )
A.0個 B.1個 C.2個 D.4個
C
【解析】:拋物線y2=4x的焦參數(shù)p=2,所以F(1,0),直線l:x=-1,即x+1=0,
設(shè)經(jīng)過點M(4,4)、F(1,0),且與直線l相切的圓的圓心為Q(g,h),
則半徑為Q到,l的距離,即1+g,所以圓的方程為(x-g)2+(y-h)2=(1+g)2,
將M、F的坐標(biāo)代入,得(4-g)2+(4-h)2=(1+g)2,(1-g)2+(0-h)2=(1+g)2,
即h2-8h+1=10g①,
h2=4g②,②代入①,
得3h2+16h-2=0,解得h有兩個解,那惡魔對應(yīng)的g有兩解,因此圓有2個,選C
科目:高中數(shù)學(xué) 來源: 題型:
A、0個 | B、1個 | C、2個 | D、4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com