設a=log23,b=log43,c=sin90°,則(  )
A、a<c<b
B、b<c<a
C、c<a<b
D、c<b<a
考點:對數(shù)值大小的比較
專題:函數(shù)的性質及應用
分析:利用對數(shù)函數(shù)、三角函數(shù)的性質的合理運用.
解答: 解:a=log23>log22=1,
0=log41<b=log43<log44=1,
c=sin90°=1,
∴b<c<a.
故選:B.
點評:本題考查三個數(shù)的大小的比較,是基礎題,解題時要注意對數(shù)函數(shù)、三角函數(shù)的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且當x>0時,不等式f(x)+x•f′(x)<0成立,若a=30.2•f(30.2),b=(logπ2)•f(logπ2),c=(log2
1
4
)
•f (log2
1
4
)
,則a,b,c間的大小關系( 。
A、c>b>a
B、c>a>b
C、b>a>c
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知BC=7,AC=8,AB=9,試求AC邊上的中線長
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞)且滿足f(xy)=f(x)+f(y),f(
1
2
)=1,如果對于0<x<y,都有f(x)>f(y).
(1)求f(1),f(2);
(2)解不等式f(-x)+f(3-x)≥-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人練習射擊,命中目標的概率分別為
1
2
1
3
,甲、乙兩人各射擊一次,有下列說法:
①目標恰好被命中一次的概率為
1
2
+
1
3

②目標恰好被命中兩次的概率為
1
2
×
1
3
;
③目標被命中的概率為
1
2
×
2
3
+
1
2
×
1
3
=
1
2

④目標被命中的概率為1-
1
2
×
2
3
;
以上說法正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC中,點A(-1,0),B(1,0).圓I是△ABC的內切圓,且CI延長線交AB與點D,若
CI
=2
ID

(1)求點C的軌跡Ω的方程
(2)若橢圓
x2
a2
+
y2
b2
=1(a>b>0)上點(x0,y0)處的切線方程是
x0x
a2
+
y0y
b2
=1
①過直線l:x=4上一點M引Ω的兩條切線,切點分別是P、Q,求證直線PQ恒過定點N;
②是否存在實數(shù)λ,使得|PN|+|QN|=λ|PN|•|QN|?若存在,求出λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(
an
,an+1)(n∈N*)在函數(shù)y=2x2的圖象上.
(1)若數(shù)列{bn}滿足b1=1,bn+1=bn+an,求數(shù)列{bn}的通項公式;
(2)在(1)的條件下,cn=n•log2bn,求{
1
cn+1
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠對某產(chǎn)品的產(chǎn)量與成本的資料分析后由如下數(shù)據(jù)
 產(chǎn)量x(千件) 2 3 5 6
 成本y(萬元) 7 8 9 12
(1)畫出散點圖
(2)求成本y與x之間的線性回歸方程
(3)當成本為15萬元時,試估計產(chǎn)量為多少件?(保留兩位小數(shù))(
a
=
.
y
-
b
.
x
,
b
=
 i i-n
.
x
.
y
n
i-1
xi2-n(
.
x
)2

查看答案和解析>>

同步練習冊答案