10.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的兩條相鄰的對稱軸的距離為$\frac{π}{3}$.若角φ的終邊經(jīng)過點(diǎn)P(1,-2),則f($\frac{7π}{3}$)等于( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

分析 有條件得出f(x)的周期和φ的正弦,代入數(shù)值計(jì)算即可.

解答 解:∵f(x)的圖象的兩條相鄰的對稱軸的距離為$\frac{π}{3}$.
∴f(x)的周期T=2×$\frac{π}{3}$=$\frac{2π}{ω}$,解得ω=3.
∵角φ的終邊經(jīng)過點(diǎn)P(1,-2),
∴φ為第四象限角,且sinφ=$\frac{-2}{\sqrt{5}}$=-$\frac{2\sqrt{5}}{5}$.
∴f($\frac{7π}{3}$)=sin(7π+φ)=sin(π+φ)=-sinφ=$\frac{2\sqrt{5}}{5}$.
故選:A.

點(diǎn)評 本題考查了正弦函數(shù)的圖象與性質(zhì),三角函數(shù)的定義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,則輸出的i值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.四面體ABCD的四個(gè)頂點(diǎn)都在球O的球面上,AB=2,BC=CD=1,∠BCD=60°,AB⊥平面BCD,則球O的表面積為(  )
A.B.$\frac{{8\sqrt{2}}}{3}π$C.$\frac{{8\sqrt{3}}}{3}π$D.$\frac{16}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.方程lnx-x2+4x-4=0的實(shí)數(shù)根個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在如圖所示的多面體ABCDEFG中,面ABCD是邊長為2的菱形,∠BAD=120°,DE∥CF∥BG,CF⊥面ABCD,AG∥EF,且CF=2 BG=4.
(I)證明:EG∥平面ABCD;
(Ⅱ)求直線CF與平面AEG所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\sqrt{2}$cos(x+$\frac{π}{4}$),把f(x)的圖象按向量$\overrightarrow{v}$=(m,0)(m>0)平移后,所得圖象恰好為函數(shù)y=f′(x),則m的最小值為$\frac{3π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow a=(1,0)$,$\overrightarrow b=(1,2)$,則向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影為( 。
A.1B.2C.(1,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{a}{x}-3,x≥1}\\{lg({x}^{2}+1),x<1}\\{\;}\end{array}\right.$,若f(1)=f(-3),則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若不等式x2+ax+1≥0對一切x∈(0,1]恒成立,則a的最小值為( 。
A.0B.-2C.-$\frac{5}{2}$D.-3

查看答案和解析>>

同步練習(xí)冊答案