【題目】已知橢圓C: 的離心率為 ,橢圓C與y軸交于A、B兩點,|AB|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點P是橢圓C上的動點,且直線PA,PB與直線x=4分別交于M、N兩點,是否存在點P,使得以MN為直徑的圓經(jīng)過點(2,0)?若存在,求出點P的橫坐標;若不存在,說明理由.
【答案】(Ⅰ)(Ⅱ)P不存在
【解析】
試題分析:(Ⅰ)運用橢圓的離心率公式,以及a,b,c的關(guān)系,計算即可得到所求橢圓方程;(Ⅱ)設(shè)P(m,n),可得,可得A(0,1),B(0,-1),設(shè)M(4,s),N(4,t),運用三點共線的條件:斜率相等,求得M,N的坐標,再由直徑所對的圓周角為直角,運用垂直的條件:斜率之積為-1,計算即可求得m,檢驗即可判斷是否存在
試題解析:(Ⅰ)由題意可得e==,2b=2,即b=1,
又a2﹣c2=1,解得a=2,c=,
即有橢圓的方程為+y2=1;
(Ⅱ)設(shè)P(m,n),可得+n2=1,
即有n2=1﹣,
由題意可得A(0,1),B(0,﹣1),設(shè)M(4,s),N(4,t),
由P,A,M共線可得,kPA=kMA,即為=,
可得s=1+,
由P,B,N共線可得,kPB=kNB,即為=,
可得s=﹣1.
假設(shè)存在點P,使得以MN為直徑的圓經(jīng)過點Q(2,0).
可得QM⊥QN,即有=﹣1,即st=﹣4.
化為﹣4m2=16n2﹣(4﹣m)2=16﹣4m2﹣(4﹣m)2,
解得m=0或8,
由P,A,B不重合,以及|m|<2,可得P不存在.
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)的導(dǎo)函數(shù)為,且滿足, ,當時有恒成立,若非負實數(shù)、滿足, ,則的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進行了“本屆奧運會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學生中隨機抽取了50人,具體的調(diào)查結(jié)果如下表:
(1)在高三年級全體學生中隨機抽取一名學生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對象中隨機選取4人進行追蹤調(diào)查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某企業(yè)的兩座建筑物AB,CD的高度分別為20m和40m,其底部BD之間距離為20m.為響應(yīng)創(chuàng)建文明城市號召,進行亮化改造,現(xiàn)欲在建筑物AB的頂部A處安裝一投影設(shè)備,投影到建筑物CD上形成投影幕墻,既達到亮化目的又可以進行廣告宣傳.已知投影設(shè)備的投影張角∠EAF為,投影幕墻的高度EF越小,投影的圖像越清晰.設(shè)投影光線的上邊沿AE與水平線AG所成角為α,幕墻的高度EF為y(m).
(1)求y關(guān)于α的函數(shù)關(guān)系式,并求出定義域;
(2)當投影的圖像最清晰時,求幕墻EF的高度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).
(1)若x=,求向量a,c的夾角;
(2)當x∈時,求函數(shù)f(x)=2a·b+1的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓N經(jīng)過點A(3,1),B(﹣1,3),且它的圓心在直線3x﹣y﹣2=0上.
(1)求圓N的方程;
(2)若點D為圓N上任意一點,且點C(3,0),求線段CD的中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放(且)個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.
(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?
(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): 取).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 2 | 3 | 2 | 7 |
表中的數(shù)據(jù)顯示,與之間存在線性相關(guān)關(guān)系,請將(Ⅱ)的結(jié)果填入空白欄,并計算關(guān)于的回歸方程.
回歸直線的斜率和截距的最小二乘估計公式分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com