分析 (1)由條件利用兩個向量的數(shù)量積公式,求得f(x)的解析式.由f(x)=0可得sinx=-1,再結(jié)合x∈[0,2π],可得x的值.
(2)由題意可得 t=${(sinx-\frac{1}{2})}^{2}$-$\frac{1}{4}$.再根據(jù)sinx∈[-1,1],利用二次函數(shù)的性質(zhì)求得t的范圍.
(3)若1$≤f(x)≤\frac{17}{4}$對一切x∈R恒成立,則f(x)∈[1,$\frac{17}{4}$].求得f(x)的最大值和最小值,可得t的范圍.
解答 解:(1)f(x)=$\overrightarrow{m}•\overrightarrow{n}$=sinx-sin2x+t=-${(sinx-\frac{1}{2})}^{2}$+$\frac{1}{4}$+t,
∵t=2,∴f(x)=-${(sinx-\frac{1}{2})}^{2}$+$\frac{9}{4}$.
由f(x)=0可得sinx=-1,再結(jié)合x∈[0,2π],可得x=$\frac{3π}{2}$.
(2)f(x)=0有實數(shù)解,則-${(sinx-\frac{1}{2})}^{2}$+$\frac{1}{4}$+t=0有解,即 t=${(sinx-\frac{1}{2})}^{2}$-$\frac{1}{4}$.
再根據(jù)sinx∈[-1,1],可得t∈[-$\frac{1}{4}$,2].
(3)若1$≤f(x)≤\frac{17}{4}$對一切x∈R恒成立,則f(x)∈[1,$\frac{17}{4}$].
由于f(x)的最大值為$\frac{1}{4}$+t,最小值為t-2,∴$\frac{1}{4}$+t≤$\frac{17}{4}$,且 t-2≥1,
求得 3≤t≤4.
點(diǎn)評 本題主要考查兩個向量的數(shù)量積公式,二次函數(shù)的性質(zhì),函數(shù)的恒成立問題,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,2$\sqrt{2}$) | B. | (2$\sqrt{2}$,2) | C. | (2$\sqrt{2}$,2$\sqrt{2}$) | D. | (1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | -$\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com